Simulating diffusion processes in discontinuous media: Benchmark tests

被引:13
|
作者
Lejay, Antoine [1 ,2 ,3 ,5 ]
Pichot, Geraldine [4 ]
机构
[1] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[2] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[3] Inria, F-54600 Villers Les Nancy, France
[4] Inria Paris, 2 Rue Simone Iff,CS 42112, F-75589 Paris 12, France
[5] IECL, BP 70238, F-54506 Vandoeuvre Les Nancy, France
关键词
Monte Carlo methods for discontinuous media; Fick's law; Breakthrough curve; STOCHASTIC DIFFERENTIAL-EQUATIONS; COMPOSITE POROUS-MEDIA; TRANSITION-PROBABILITY DENSITIES; WALK PARTICLE TRACKING; NUMERICAL-INTEGRATION; ADVECTION-DISPERSION; MONTE-CARLO; TRANSPORT; SCHEME; TIMES;
D O I
10.1016/j.jcp.2016.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present several benchmark tests for Monte Carlo methods simulating diffusion in one-dimensional discontinuous media. These benchmark tests aim at studying the potential bias of the schemes and their impact on the estimation of micro- or macroscopic quantities (repartition of masses, fluxes, mean residence time,...). These benchmark tests are backed by a statistical analysis to filter out the bias from the unavoidable Monte Carlo error. We apply them on four different algorithms. The results of the numerical tests give a valuable insight into the fine behavior of these schemes, as well as rules to choose between them. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 413
页数:30
相关论文
共 50 条
  • [21] The use of the diffusion approximation for simulating radiation and thermal processes in the skin
    Kovtanyuk, A. E.
    Grenkin, G. V.
    Chebotarev, A. Yu.
    OPTICS AND SPECTROSCOPY, 2017, 123 (02) : 205 - 210
  • [22] SIMULATING DRIFT-DIFFUSION PROCESSES WITH GENERALIZED INTERVAL PROBABILITY
    Wang, Yan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 3, PTS A AND B, 2012, : 1201 - 1211
  • [23] A METHOD OF SIMULATING DISCONTINUOUS SIGNALS
    LOPRESTI, L
    MONDIN, M
    ESA JOURNAL-EUROPEAN SPACE AGENCY, 1991, 15 (3-4): : 261 - 275
  • [24] Transport processes in porous media: diffusion in zeolites
    Haberlandt, R
    THIN SOLID FILMS, 1998, 330 (01) : 34 - 45
  • [25] LOCALIZATION OF DIFFUSION PROCESSES IN MEDIA WITH CONSTANT PROPERTIES
    SAMARSKII, AA
    GALAKTIONOV, VA
    KURDIUMOV, SP
    MIKHAILOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1979, 247 (02): : 349 - 353
  • [26] Multiscale analysis of diffusion processes in composite media
    Timofte, Claudia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (09) : 1573 - 1580
  • [27] ON THE THEORY OF DIFFUSION-PROCESSES IN VISCOELASTIC MEDIA
    GROGER, K
    HUNLICH, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10): : 513 - 519
  • [28] A LOGIC FOR SIMULATING DISCONTINUOUS SYSTEMS
    NARAIN, S
    ROTHENBERG, J
    1989 WINTER SIMULATION CONFERENCE PROCEEDINGS, 1989, : 692 - 701
  • [29] NON-LINEAR FILTERING OF DIFFUSION-PROCESSES WITH DISCONTINUOUS OBSERVATIONS
    DABBOUS, TE
    AHMED, NU
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1984, 2 (01) : 87 - 106
  • [30] A STABILIZED DISCONTINUOUS GALERKIN METHOD FOR THE NONLINEAR ADVECTION-DIFFUSION PROCESSES
    Tunc, Huseyin
    Sari, Murat
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2021, 47 (01): : 24 - 45