Simulating diffusion processes in discontinuous media: Benchmark tests

被引:13
|
作者
Lejay, Antoine [1 ,2 ,3 ,5 ]
Pichot, Geraldine [4 ]
机构
[1] Univ Lorraine, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[2] CNRS, IECL, UMR 7502, F-54500 Vandoeuvre Les Nancy, France
[3] Inria, F-54600 Villers Les Nancy, France
[4] Inria Paris, 2 Rue Simone Iff,CS 42112, F-75589 Paris 12, France
[5] IECL, BP 70238, F-54506 Vandoeuvre Les Nancy, France
关键词
Monte Carlo methods for discontinuous media; Fick's law; Breakthrough curve; STOCHASTIC DIFFERENTIAL-EQUATIONS; COMPOSITE POROUS-MEDIA; TRANSITION-PROBABILITY DENSITIES; WALK PARTICLE TRACKING; NUMERICAL-INTEGRATION; ADVECTION-DISPERSION; MONTE-CARLO; TRANSPORT; SCHEME; TIMES;
D O I
10.1016/j.jcp.2016.03.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present several benchmark tests for Monte Carlo methods simulating diffusion in one-dimensional discontinuous media. These benchmark tests aim at studying the potential bias of the schemes and their impact on the estimation of micro- or macroscopic quantities (repartition of masses, fluxes, mean residence time,...). These benchmark tests are backed by a statistical analysis to filter out the bias from the unavoidable Monte Carlo error. We apply them on four different algorithms. The results of the numerical tests give a valuable insight into the fine behavior of these schemes, as well as rules to choose between them. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 413
页数:30
相关论文
共 50 条
  • [1] Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps
    Lejay, Antoine
    Pichot, Geraldine
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7299 - 7314
  • [2] A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients
    Lejay, A
    Martinez, M
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 107 - 139
  • [3] A Fully Coupled Discontinuous Deformation Analysis Model for Simulating Hydromechanical Processes in Fractured Porous Media
    Hu, Yanzhi
    Li, Xiao
    Li, Shouding
    Zhang, Zhaobin
    He, Jianming
    Li, Guanfang
    Zhang, Ming
    [J]. Water (Switzerland), 2024, 16 (21)
  • [4] New Monte Carlo schemes for simulating diffusions in discontinuous media
    Lejay, Antoine
    Maire, Sylvain
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 245 : 97 - 116
  • [5] Large deviation of diffusion processes with discontinuous drift
    Chiang, TS
    Sheu, SJ
    [J]. STOCHASTIC ANALYSIS AND RELATED TOPICS VII, 2001, 48 : 159 - 175
  • [6] STATIONARY DIFFUSION PROCESSES WITH DISCONTINUOUS DRIFT COEFFICIENTS
    Noarov, A. I.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (05) : 795 - 809
  • [7] DIFFUSION-PROCESSES - DISCONTINUOUS COEFFICIENTS, DEGENERATE DIFFUSION, RANDOMIZED DRIFT
    ANULOVA, SV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1981, 260 (05): : 1036 - 1040
  • [8] Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media
    Sun, Shuyu
    Wheeler, Mary F.
    [J]. ADVANCES IN WATER RESOURCES, 2007, 30 (6-7) : 1696 - 1710
  • [9] Bootstrap specification tests for diffusion processes
    Corradi, V
    Swanson, NR
    [J]. JOURNAL OF ECONOMETRICS, 2005, 124 (01) : 117 - 148
  • [10] Simulating the spatial diffusion of memes on social media networks
    Dang, Lanxue
    Chen, Zhuo
    Lee, Jay
    Tsou, Ming-Hsiang
    Ye, Xinyue
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (08) : 1545 - 1568