Nonparametric vector autoregression

被引:62
|
作者
Hardle, W
Tsybakov, A
Yang, L
机构
[1] Humboldt Universitat Berlin, Wirtschaftswissensch Fak, Inst Stat & Okonometrie, D-10178 Berlin, Germany
[2] Univ Paris 06, Lab Stat Theor & Appl, F-75252 Paris, France
关键词
D O I
10.1016/S0378-3758(97)00143-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a vector conditional heteroscedastic autoregressive nonlinear (CHARN) model in which both the conditional mean and the conditional variance (volatility) matrix are unknown functions of the past. Nonparametric estimators of these functions are constructed based on local polynomial fitting. We examine the rates of convergence of these estimators and give a result on their asymptotic normality. These results are applied to estimation of volatility matrices in foreign exchange markets. Estimation of the conditional covariance surface for the Deutsche Mark/US Dollar (DEM/USD) and Deutsche Mark/British Pound !DEM/GBP) daily returns show negative correlation when the two series have opposite lagged values and positive correlation elsewhere. The relation of our findings to the capital asset pricing model is discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 245
页数:25
相关论文
共 50 条
  • [41] Macroeconomic modelling using cointegration vector autoregression
    Stoklasova, Radmila
    [J]. MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 732 - 737
  • [42] MULTICHANNEL SIGNAL CLASSIFICATION USING VECTOR AUTOREGRESSION
    Haboub, Amine
    Baali, Hamza
    Bouzerdoum, Abdesselam
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1021 - 1025
  • [43] Parallelism on Hybrid Metaheuristics for Vector Autoregression Models
    Castano, Alfonso L.
    Cuenca, Javier
    Cutillas-Lozano, Jose-Matias
    Gimenez, Domingo
    Lopez-Espin, Jose J.
    Perez-Bernabeu, Alberto
    [J]. PROCEEDINGS 2018 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2018, : 828 - 835
  • [44] Panel vector autoregression in R with the package panelvar
    Sigmund, Michael
    Ferstl, Robert
    [J]. QUARTERLY REVIEW OF ECONOMICS AND FINANCE, 2021, 80 : 693 - 720
  • [45] Dependability of unstructured estimator in vector autoregression identification
    Lu, Xin
    Nishiyama, Kiyoshi
    [J]. 2007 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, VOLS 1 AND 2, 2007, : 589 - 594
  • [46] Asymptotic and bootstrap prediction regions for vector autoregression
    Kim, JH
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1999, 15 (04) : 393 - 403
  • [47] EFFICIENCY OF COMMODITY FUTURES - A VECTOR AUTOREGRESSION ANALYSIS
    CANARELLA, G
    POLLARD, SK
    [J]. JOURNAL OF FUTURES MARKETS, 1985, 5 (01) : 57 - 76
  • [48] Vector autoregression and the dynamic multiplier: a historical review
    Stein, SH
    Song, FM
    [J]. JOURNAL OF POLICY MODELING, 2002, 24 (03) : 283 - 300
  • [49] VECTOR AUTOREGRESSION FORECASTING MODELS - SUGGESTED IMPROVEMENTS
    KAYLEN, MS
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1986, 68 (05) : 1390 - 1390
  • [50] Nonparametric identification of the spatial autoregression model under a priori stochastic uncertainty
    V. B. Goryainov
    E. R. Goryainova
    [J]. Automation and Remote Control, 2010, 71 : 198 - 208