Asymptotic behaviour of time averages for non-ergodic Gaussian processes

被引:5
|
作者
Slezak, Jakub [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Wybrzde Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Ergodicity breaking; Gaussian process; Statistical analysis; Generalised Langevin equation;
D O I
10.1016/j.aop.2017.05.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we study the behaviour of time-averages for stationary (non-ageing), but ergodicity-breaking Gaussian processes using their representation in Fourier space. We provide explicit formulae for various time-averaged quantities, such as mean square displacement, density, and analyse the behaviour of time-averaged characteristic function, which gives insight into rich memory structure of the studied processes. Moreover, we show applications of the ergodic criteria in Fourier space, determining the ergodicity of the generalised Langevin equation's solutions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 311
页数:27
相关论文
共 50 条
  • [21] INFERENCE FROM NON-ERGODIC TIME-SERIES
    DAVIES, RB
    [J]. ADVANCES IN APPLIED PROBABILITY, 1979, 11 (02) : 261 - 262
  • [22] Intrinsically weighted means and non-ergodic marked point processes
    Alexander Malinowski
    Martin Schlather
    Zhengjun Zhang
    [J]. Annals of the Institute of Statistical Mathematics, 2016, 68 : 1 - 24
  • [23] Some characterizations of non-ergodic estimating functions for stochastic processes
    S. Y. Hwang
    [J]. Journal of the Korean Statistical Society, 2015, 44 : 661 - 667
  • [24] Frozen in time: A review of non-ergodic physical systems
    Bossen, Aaron M.
    Mauro, John C.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, : 7939 - 7950
  • [25] Ergodic and non-ergodic clustering of inertial particles
    Gustavsson, K.
    Mehlig, B.
    [J]. EPL, 2011, 96 (06)
  • [26] On non-ergodic asset prices
    Horst, Ulrich
    Wenzelburger, Jan
    [J]. ECONOMIC THEORY, 2008, 34 (02) : 207 - 234
  • [27] Non-ergodic laser cooling
    Cohen-Tannoudji, C
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1733): : 2219 - 2221
  • [28] Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels
    Cherstvy, Andrey G.
    Thapa, Samudrajit
    Wagner, Caroline E.
    Metzler, Ralf
    [J]. SOFT MATTER, 2019, 15 (12) : 2526 - 2551
  • [29] THE NON-ERGODIC JACKSON NETWORK
    GOODMAN, JB
    MASSEY, WA
    [J]. JOURNAL OF APPLIED PROBABILITY, 1984, 21 (04) : 860 - 869
  • [30] On non-ergodic asset prices
    Ulrich Horst
    Jan Wenzelburger
    [J]. Economic Theory, 2008, 34 : 207 - 234