Asymptotic behaviour of time averages for non-ergodic Gaussian processes

被引:5
|
作者
Slezak, Jakub [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Wybrzde Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Ergodicity breaking; Gaussian process; Statistical analysis; Generalised Langevin equation;
D O I
10.1016/j.aop.2017.05.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we study the behaviour of time-averages for stationary (non-ageing), but ergodicity-breaking Gaussian processes using their representation in Fourier space. We provide explicit formulae for various time-averaged quantities, such as mean square displacement, density, and analyse the behaviour of time-averaged characteristic function, which gives insight into rich memory structure of the studied processes. Moreover, we show applications of the ergodic criteria in Fourier space, determining the ergodicity of the generalised Langevin equation's solutions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 311
页数:27
相关论文
共 50 条
  • [1] ON ASYMPTOTIC EXPANSIONS IN NON-ERGODIC MODELS
    JENSEN, JL
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (04) : 305 - 318
  • [2] Asymptotic Behaviour of Trajectory Fitting Estimators for Certain Non-ergodic SDE
    Hans M. Dietz
    [J]. Statistical Inference for Stochastic Processes, 2001, 4 (3) : 249 - 258
  • [3] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [4] Fluctuations of non-ergodic stochastic processes
    G. George
    L. Klochko
    A. N. Semenov
    J. Baschnagel
    J. P. Wittmer
    [J]. The European Physical Journal E, 2021, 44
  • [5] Fluctuations of non-ergodic stochastic processes
    George, G.
    Klochko, L.
    Semenov, A. N.
    Baschnagel, J.
    Wittmer, J. P.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (04):
  • [6] On Non-Ergodic Gaussian Quadratic Stochastic Operators
    Hamzah, Nur Zatul Akmar
    Ganikhodjaev, Nasir
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [7] Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes
    Mohamed El Machkouri
    Khalifa Es-Sebaiy
    Youssef Ouknine
    [J]. Journal of the Korean Statistical Society, 2016, 45 : 329 - 341
  • [8] Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes
    El Machkouri, Mohamed
    Es-Sebaiy, Khalifa
    Ouknine, Youssef
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) : 329 - 341
  • [9] Non-ergodic behaviour of the k-body embedded Gaussian random ensembles for bosons
    Asaga, T
    Benet, L
    Rupp, T
    Weidenmüller, HA
    [J]. EUROPHYSICS LETTERS, 2001, 56 (03): : 340 - 346
  • [10] Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes
    Bel, Golan
    Nemenman, Ilya
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11