Continuous-time random walks and Fokker-Planck equation in expanding media

被引:15
|
作者
Le Vot, F. [1 ]
Yuste, S. B.
机构
[1] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
ANOMALOUS DIFFUSION; MORPHOGEN GRADIENTS; TISSUE-GROWTH; COSMIC-RAYS; MODELS; UNIVERSE;
D O I
10.1103/PhysRevE.98.042117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a separable continuous-time random walk model for describing normal as well as anomalous diffusion of particles subjected to an external force when these particles diffuse in a uniformly expanding (or contracting) medium. A general equation that relates the probability distribution function (pdf) of finding a particle at a given position and time to the single-step jump length and waiting time pdfs is provided. The equation takes the form of a generalized Fokker-Planck equation when the jump length pdf of the particle has a finite variance. This generalized equation becomes a fractional Fokker-Planck equation in the case of a heavy-tailed waiting time pdf. These equations allow us to study the relationship between expansion, diffusion, and external force. We establish the conditions under which the dominant contribution to transport stems from the diffusive transport rather than from the drift due to the medium expansion. We find that anomalous diffusion processes under a constant external force in an expanding medium described by means of our continuous-time random walk model violate the generalized Einstein relation and lead to propagators that are qualitatively different from the ones found in a static medium. Our results are supported by numerical simulations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [22] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [23] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [24] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [25] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [26] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [27] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [28] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [29] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [30] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879