Electrochemical and electron microscopic characterization of thin-film LiCoO2 cathodes under high-voltage cycling conditions

被引:31
|
作者
Jang, YI [1 ]
Dudney, NJ
Blom, DA
Allard, LF
机构
[1] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA
关键词
thin-film batteries; lithium cobalt oxide; lipon; transmission electron microscopy; nanocrystalline cathode;
D O I
10.1016/S0378-7753(03)00160-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin-film LiCoO2 batteries using the Lipon electrolyte exhibit excellent cycleability up to 4.4 V. With the enhanced voltage limit for repeatable cycling, the thin-film cathode delivers a specific capacity of 170 mAh/g, which is 22% higher than that for previous LiCoO2 cathodes cycled to 4.2 V No evidence of grain fracture was detected by transmission electron microscopy (TEM) in the cathode layer after cycling to 4.4 V. When cycled to >4.4 V, capacity fades and cell resistance increases more rapidly, attributed to the onset of a phase transition at >4.4 V. Fracture of grains was observed by TEM in the cathode layer after cycling to 5 V Nanocrystalline films show better cycleability to 5 V than films with a larger grain size. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:295 / 299
页数:5
相关论文
共 50 条
  • [41] A multifunctional zeolite film enables stable high-voltage operation of a LiCoO2 cathode
    Lin, Zezhou
    Ying, Yiran
    Xu, Zhihang
    Chen, Gao
    Gong, Xi
    Wang, Zehua
    Guan, Daqin
    Zhao, Leqi
    Yang, Mingyang
    Fan, Ke
    Liu, Tiancheng
    Li, Hao
    Zhang, Honglei
    Li, Huangxu
    Zhang, Xi
    Zhu, Ye
    Lu, Zhouguang
    Shao, Zongping
    Hou, Peiyu
    Huang, Haitao
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (01) : 334 - 346
  • [42] Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification
    Tang, Chao
    Chen, Yawei
    Zhang, Zhengfeng
    Li, Wenqiang
    Jian, Junhua
    Jie, Yulin
    Huang, Fanyang
    Han, Yehu
    Li, Wanxia
    Ai, Fuping
    Cao, Ruiguo
    Yan, Pengfei
    Lu, Yuhao
    Jiao, Shuhong
    NANO RESEARCH, 2023, 16 (03) : 3864 - 3871
  • [43] Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification
    Chao Tang
    Yawei Chen
    Zhengfeng Zhang
    Wenqiang Li
    Junhua Jian
    Yulin Jie
    Fanyang Huang
    Yehu Han
    Wanxia Li
    Fuping Ai
    Ruiguo Cao
    Pengfei Yan
    Yuhao Lu
    Shuhong Jiao
    Nano Research, 2023, 16 : 3864 - 3871
  • [44] A HIGH-VOLTAGE THIN-FILM FET
    BRODIE, DE
    HAERING, RR
    NYBERG, DW
    PROCEEDINGS OF THE IEEE, 1969, 57 (10) : 1774 - &
  • [45] Formation, Structural Variety, and Impact of Antiphase Boundaries on Li Diffusion in LiCoO2 Thin-Film Cathodes
    Phuong-Vu Ong
    Yang, Zhenzhong
    Sushko, Peter, V
    Du, Yingge
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (18): : 5515 - 5520
  • [46] Study on the effect of Ni and Mn doping on the structural evolution of LiCoO2 under 4.6 V high-voltage cycling
    Wang, Yeting
    Cheng, Tao
    Yu, Zhuo-Er
    Lyu, Yingchun
    Guo, Bingkun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [47] Influence of Zr dopant on microstructural and electrochemical properties of LiCoO2 thin film cathodes by RF sputtering
    Ganesh, K. Sivajee
    Reddy, B. Purusottam
    Kumar, P. Jeevan
    Hussain, O. M.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 828 : 71 - 79
  • [48] Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 μm thick LiCoO2
    Dudney, NJ
    Jang, YI
    JOURNAL OF POWER SOURCES, 2003, 119 : 300 - 304
  • [49] FABRICATION OF LICOO2 THIN-FILM CATHODES FOR RECHARGEABLE LITHIUM BATTERY BY ELECTROSTATIC SPRAY-PYROLYSIS
    CHEN, CH
    BUYSMAN, AAJ
    KELDER, EM
    SCHOONMAN, J
    SOLID STATE IONICS, 1995, 80 (1-2) : 1 - 4
  • [50] Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation
    Liu, Zhenzhen
    Han, Miaomiao
    Zhang, Shengbo
    Li, Huaimeng
    Wu, Xi
    Fu, Zhen
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    ADVANCED MATERIALS, 2024, 36 (32)