Levinson theorem for the Dirac equation in D+1 dimensions -: art. no. 062715

被引:28
|
作者
Gu, XY
Ma, ZQ
Dong, SH
机构
[1] China Ctr Adv Sci & Technol, World Lab, Beijing 100080, Peoples R China
[2] Inst High Energy Phys, Beijing 100039, Peoples R China
[3] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 06期
关键词
D O I
10.1103/PhysRevA.67.062715
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a spherically symmetric potential in D+1 dimensions is uniformly established as a relation between the total number of bound states and the sum of the phase shifts of the scattering states at E=+/-M with a given angular momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity to be square integrable.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Wegner-Houghton equation in low dimensions - art. no. 085018
    Carmona, JM
    Polonyi, J
    Tarancón, A
    PHYSICAL REVIEW D, 2000, 61 (08)
  • [22] Symmetry limits of (D+1)-dimensional Dirac equation with Mobius square potential
    Ikot, Akpan N.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05): : 1 - 10
  • [23] Levinson-like theorem for scattering from a Bose-Einstein condensate -: art. no. 070403
    Brand, J
    Häring, I
    Rost, JM
    PHYSICAL REVIEW LETTERS, 2003, 91 (07)
  • [24] Universal dynamic fragmentation in D dimensions -: art. no. 245506
    Åström, JA
    Ouchterlony, F
    Linna, RP
    Timonen, J
    PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 245506 - 1
  • [25] Nodal theorems for the Dirac equation in d ≥ 1 dimensions
    Hall, Richard L.
    Zorin, Petr
    ANNALEN DER PHYSIK, 2014, 526 (1-2) : 79 - 86
  • [26] Minimax determination of the energy spectrum of the Dirac equation in a Schwarzschild background -: art. no. 022103
    Cáceres, A
    Doran, C
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [27] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, SH
    Hou, XW
    Ma, ZQ
    PHYSICAL REVIEW A, 1999, 59 (02): : 995 - 1002
  • [28] Zero tension Kardar-Parisi-Zhang equation in (d+1)-dimensions
    Bahraminasab, A
    Tabei, SMA
    Masoudi, AA
    Shahbazi, F
    Tabar, MRR
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (5-6) : 1521 - 1544
  • [29] Symmetry limits of (D+1)-dimensional Dirac equation with Möbius square potential
    Akpan N. Ikot
    B. H. Yazarloo
    S. Zarrinkamar
    H. Hassanabadi
    The European Physical Journal Plus, 129
  • [30] Dewetting hydrodynamics in 1+1 dimensions -: art. no. 026304
    Müller-Krumbhaar, H
    Emmerich, H
    Brener, E
    Hartmann, M
    PHYSICAL REVIEW E, 2001, 63 (02):