Hybrid optimization algorithm for parameter estimation of poly-phase induction motors with experimental verification

被引:11
|
作者
Abdelwanis, Mohamed I. [1 ]
Sehiemy, Ragab A. [1 ]
Hamida, Mohmed A. [2 ]
机构
[1] Kafrelsheikh Univ, Fac Engn, Elect Engn Dept, Kafr Al Sheikh, Egypt
[2] Ecole Cent Nantes, LS2N UMR CNRS 6004, Nantes, France
关键词
HPJOA; Poly-phase induction motors; Parameter estimation; Statistical analysis; Robustness; Experimental tests; PARTICLE SWARM OPTIMIZATION; JAYA ALGORITHM; SYSTEM; IDENTIFICATION; PERFORMANCE;
D O I
10.1016/j.egyai.2021.100083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The estimated parameters accuracy of poly-phase induction motors is crucial for effective performance prediction and/or control in various manufacturing applications. This study investigates hybrid algorithm between particle swarm optimization and Jaya optimization algorithms for finding the optimal parameters estimation of poly-phase induction motors. It is carried out using the manufacturer's operation characteristics on two poly-phase induction motors. Numerical results show the capability of the proposed hybrid optimization algorithm. The proposed algorithm has competitive performance compared with conventional algorithms as well as with differential evolution and genetic algorithms. Experimental verifications are carried out on three-phase and six-phase induction motors. Also, it emulates the closeness between experimental and estimated parameters with fast convergence compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm compared with other algorithms for varied iteration numbers, population size and convergence.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Numerical Estimation and Experimental Verification of Optimal Parameter Identification Based on Modern Optimization of a Three Phase Induction Motor
    Rezk, Hegazy
    Elghany, Asmaa A.
    Al-Dhaifallah, Mujahed
    El Sayed, Abo Hashema M.
    Ibrahim, Mohamed N.
    [J]. MATHEMATICS, 2019, 7 (12)
  • [2] Auto-tuning parameter estimation algorithm for induction motors
    Feng, Guang
    Huang, Lipei
    Zhu, Dongqi
    [J]. 2001, Press of Tsinghua University (41):
  • [3] A Hybrid Dragonfly Algorithm for Efficiency Optimization of Induction Motors
    Shukla, Niraj Kumar
    Srivastava, Rajeev
    Mirjalili, Seyedali
    [J]. SENSORS, 2022, 22 (07)
  • [4] Synergy of electrostatic discharge optimizer and experimental verification for parameters estimation of three phase induction motors
    Elkholy, Mahmoud M.
    El-Hay, Enas A.
    El-Fergany, Attia A.
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 31
  • [5] Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization
    Mohammadi, Hamid Reza
    Akhavan, Ali
    [J]. JOURNAL OF ENGINEERING, 2014, 2014
  • [6] Parameter Estimation of Electric Power Transformers Using Coyote Optimization Algorithm With Experimental Verification
    Abdelwanis, Mohamed I.
    Abaza, Amlak
    El-Sehiemy, Ragab A.
    Ibrahim, Mohamed N.
    Rezk, Hegazy
    [J]. IEEE ACCESS, 2020, 8 : 50036 - 50044
  • [7] Modeling and Parameter Estimation of Split-Phase Induction Motors
    Tekgun, Burak
    Sozer, Yilmaz
    Tsukerman, Igor
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2016, 52 (02) : 1431 - 1440
  • [8] Modeling and Parameter Estimation of Split - Single Phase Induction Motors
    Tekgun, Burak
    Sozer, Yilmaz
    Tsukerman, Igor
    [J]. 2014 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2014, : 1317 - 1324
  • [9] External faults in poly-phase permanent magnet propulsion motors
    Ning, Puqi
    Chai, Jianyun
    Cai, Ping
    Huang, Hai
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (04): : 474 - 477
  • [10] Self-Commissioning Parameter Estimation Algorithm for Loaded Induction Motors
    Travieso-Torres, Juan Carlos
    Lee, Sze Sing
    Veliz-Tejo, Adolfo
    Leiva-Silva, Felipe
    Ricaldi-Morales, Abdiel
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, : 1 - 11