Comments on the non-commutative description of classical gravity

被引:3
|
作者
Bimonte, G
Musto, R
Stern, A
Vitale, P
机构
[1] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80125 Naples, Italy
[2] Ist Nazl Fis Nucl, I-80125 Naples, Italy
[3] Univ Alabama, Dept Phys, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1016/S0370-2693(98)01200-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find a one-parameter family of Lagrangian descriptions for classical general relativity in terms of tetrads which are not c-numbers. Rather, they obey exotic commutation relations. These noncommutative properties drop out in the metric sector of the theory, where the Christoffel symbols and the Riemann tensor are ordinary commuting objects and they are given by the usual expression in terms of the metric tensor. Although the metric tensor is not a c-number, we argue that all measurements one can make in this theory are associated with c-numbers, and thus that the common invariant sector of our one-parameter family of deformed gauge theories (for the case of zero torsion) is physically equivalent to Einstein's general relativity. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
  • [1] Non-commutative models in gravity
    Maceda, Marco
    [J]. RECENT DEVELOPMENTS IN GRAVITATION AND COSMOLOGY, 2008, 977 : 30 - 36
  • [2] A perspective on non-commutative quantum gravity
    Martins, Rachel A. D.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (08)
  • [3] NON-COMMUTATIVE DIFFEOMORPHISM INVARIANT GRAVITY
    Marculescu, S.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2008, 53 (9-10): : 1165 - 1170
  • [4] CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY
    DUBOISVIOLETTE, M
    KERNER, R
    MADORE, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) : 1709 - 1724
  • [5] Non-Commutative Worlds and Classical Constraints
    Kauffman, Louis H.
    [J]. ENTROPY, 2018, 20 (07):
  • [6] Some investigations on gravity in non-commutative geometry
    Sabiri, M
    Jammari, MK
    Bardach, M
    [J]. FROM QUANTUM FLUCTUATIONS TO COSMOLOGICAL STRUCTURES, 1997, 126 : 561 - 562
  • [7] Non-commutative corrections in spectral matrix gravity
    Fucci, Guglielmo
    Avramidi, Ivan G.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (04)
  • [8] Stability of a non-commutative Jackiw–Teitelboim gravity
    D.V. Vassilevich
    R. Fresneda
    D.M. Gitman
    [J]. The European Physical Journal C - Particles and Fields, 2006, 47 : 235 - 240
  • [9] Classical mechanics in non-commutative phase space
    Wei Gao-Feng
    Long Chao-Yun
    Long Zheng-Wen
    Qin Shui-Jie
    Fu Qiang
    [J]. CHINESE PHYSICS C, 2008, 32 (05) : 338 - 341
  • [10] Process Dimension of Classical and Non-Commutative Processes
    Loehr, Wolfgang
    Szkola, Arleta
    Ay, Nihat
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (01):