NON-COMMUTATIVE DIFFEOMORPHISM INVARIANT GRAVITY

被引:0
|
作者
Marculescu, S. [1 ]
机构
[1] Univ Siegen, Fachbereich Phys, D-60438 Siegen, Germany
来源
ROMANIAN JOURNAL OF PHYSICS | 2008年 / 53卷 / 9-10期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Seiberg-Witten maps of vierbein and spin-connection in the vector representation of the gauged Lorentz group SO(1, 3) are used to construct a non-commutative version of the Hilbert-Einstein Lagrangian. By imposing the vierbein postulate and by demanding a torsion free geometry the non-commutative Lagrangian can be extended to become diffeomorphism invariant, provided that the non-commmutativity parameters form the components of a covariantly constant bivector and the spacetime has a (2 + 2)-decomposable structure.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [1] Non-commutative models in gravity
    Maceda, Marco
    [J]. RECENT DEVELOPMENTS IN GRAVITATION AND COSMOLOGY, 2008, 977 : 30 - 36
  • [2] A perspective on non-commutative quantum gravity
    Martins, Rachel A. D.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (08)
  • [3] Lorentz-invariant non-commutative QED
    Morita, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2002, 108 (06): : 1099 - 1122
  • [4] Some investigations on gravity in non-commutative geometry
    Sabiri, M
    Jammari, MK
    Bardach, M
    [J]. FROM QUANTUM FLUCTUATIONS TO COSMOLOGICAL STRUCTURES, 1997, 126 : 561 - 562
  • [5] Comments on the non-commutative description of classical gravity
    Bimonte, G
    Musto, R
    Stern, A
    Vitale, P
    [J]. PHYSICS LETTERS B, 1998, 441 (1-4) : 69 - 76
  • [6] Non-commutative corrections in spectral matrix gravity
    Fucci, Guglielmo
    Avramidi, Ivan G.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (04)
  • [7] Stability of a non-commutative Jackiw–Teitelboim gravity
    D.V. Vassilevich
    R. Fresneda
    D.M. Gitman
    [J]. The European Physical Journal C - Particles and Fields, 2006, 47 : 235 - 240
  • [8] Non-commutative Clarkson inequalities for unitarily invariant norms
    Hirzallah, O
    Kittaneh, F
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2002, 202 (02) : 363 - 369
  • [9] Stability of a non-commutative Jackiw-Teitelboim gravity
    Vassilevich, D. V.
    Fresneda, R.
    Gitman, D. M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2006, 47 (01): : 235 - 240
  • [10] Towards non-commutative topological gauge theory of gravity
    Garcia-Compeán, H
    Obregón, O
    Ramirez, C
    Sabido, M
    [J]. DEVELOPMENTS IN MATHEMATICAL AND EXPERIMENTAL PHYSICS, VOL A: COSMOLOGY AND GRAVITATION, 2002, : 71 - 78