Anisotropy in three-dimensional MHD turbulence

被引:0
|
作者
Bigot, B. [1 ,2 ]
Galtier, S. [1 ]
Politano, H. [2 ]
机构
[1] Univ Paris 11, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France
[2] Observ Cote Azur, Lab Cassiopee, UMR 6202, F-06304 Nice, France
来源
ADVANCES IN TURBULENCE XI | 2007年 / 117卷
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We perform numerical simulations to characterize the transition from strong to weak magnetohydrodynamic (MHD) turbulence for freely decaying incompressible flows in presence of a uniform magnetic field B-0. Due to reduction of energetic transfers along B-0, the flow anisotropy, as measured for example by Shebalin angles, increases together with B-0 intensity. At high B-0, ratios of Alfven to nonlinear turnover timescales stay below unity allowing for an Iroshnikov-Kraichnan description of anisotropic flows.
引用
收藏
页码:26 / 28
页数:3
相关论文
共 50 条
  • [21] Nonlocality and intermittency in three-dimensional turbulence
    Laval, JP
    Dubrulle, B
    Nazarenko, S
    [J]. PHYSICS OF FLUIDS, 2001, 13 (07) : 1995 - 2012
  • [22] Wavelet filtering of three-dimensional turbulence
    Farge, M
    Pellegrino, G
    Schneider, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S465 - S466
  • [23] Three-dimensional perturbations in conformal turbulence
    Moriconi, L
    [J]. PHYSICAL REVIEW E, 1996, 54 (02): : 1550 - 1559
  • [24] Statistics of three-dimensional Lagrangian turbulence
    Beck, Christian
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [25] Three-dimensional Hall Magnetohydrodynamics Turbulence
    Meyrand, Romain
    Galtier, Sebastien
    [J]. NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2011, 2011, 459 : 28 - 33
  • [26] Three-dimensional solutions for general anisotropy
    Barber, J. R.
    Ting, T. C. T.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (09) : 1993 - 2006
  • [27] Three-dimensional stability of a rotating MHD flow
    T. Tomasino
    P. Marty
    [J]. Acta Mechanica, 2004, 172 : 135 - 150
  • [28] Regularity criteria for the three-dimensional MHD equations
    Lan Luo
    Yong-ye Zhao
    Qing Yang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 581 - 594
  • [29] Regularity criteria for the three-dimensional MHD equations
    Luo, Lan
    Zhao, Yong-ye
    Yang, Qing
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (04): : 581 - 594
  • [30] Three-dimensional stability of a rotating MHD flow
    Tomasino, T
    Marty, P
    [J]. ACTA MECHANICA, 2004, 172 (3-4) : 135 - 150