Some Inequalities Using Generalized Convex Functions in Quantum Analysis

被引:11
|
作者
Vivas-Cortez, Miguel J. [1 ]
Kashuri, Artion [2 ]
Liko, Rozana [2 ]
Hernandez Hernandez, Jorge E. [3 ]
机构
[1] Pontificia Univ Catolica Ecuador, Fac Ciencias Exactas & Nat, Escuela Ciencias Fis & Matemat, Av 12 Octubre 1076, Quito 17012184, Ecuador
[2] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlora 1001, Vlora, Albania
[3] Univ Centroccident Lisandro Alvarado, Dept Tecn Cuantitat, Decanato Ciencias Econ & Empresariales, Av 20 Esq Av Moran,Edf Los Militares,Piso 2,Ofc 2, Barquisimeto 3001, Venezuela
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 11期
关键词
integral inequalities; (mh(1)h(2))-convex functions; dominated convexity; quantum calculus; HADAMARD-TYPE INEQUALITIES; INTEGRALS; BOUNDS;
D O I
10.3390/sym11111402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present work, the Hermite-Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in (0, 1] and two arbitrary real functions defined on [0, 1]. From the proven results, various inequalities of the same type are deduced for other types of generalized convex functions and the methodology used reveals, in a sense, a symmetric mathematical phenomenon. In addition, the definition of dominated convex functions with respect to the generalized class of convex functions aforementioned is introduced, and some integral inequalities are established.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Note on some inequalities for generalized convex functions
    Bakula, MK
    Pecaric, J
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (01): : 43 - 52
  • [2] Quantum Trapezium-Type Inequalities Using Generalized φ-Convex Functions
    Vivas-Cortez, Miguel J.
    Kashuri, Artion
    Liko, Rozana
    Hernandez, Jorge E.
    [J]. AXIOMS, 2020, 9 (01)
  • [3] Quantum Estimates of Ostrowski Inequalities for Generalized φ-Convex Functions
    Vivas-Cortez, Miguel J.
    Kashuri, Artion
    Liko, Rozana
    Hernandez Hernandez, Jorge E.
    [J]. SYMMETRY-BASEL, 2019, 11 (12):
  • [4] Some Generalized Integral Inequalities for Convex Functions and Applications
    Sarikaya, Mehmet Zeki
    Tunc, Tuba
    Yildiz, Mustafa Kemal
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [5] Generalized Inequalities for Convex Functions
    Pavic, Z.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (03) : 77 - 87
  • [6] Some Generalized Fractional Integral Inequalities for Convex Functions with Applications
    Zhao, Dafang
    Ali, Muhammad Aamir
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [7] On some generalized integral inequalities for phi-convex functions
    Sarikaya, Mehmet Zeki
    Buyukeken, Meltem
    Kiris, Mehmet Eyup
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 367 - 377
  • [8] On generalizations of some inequalities for convex functions via quantum integrals
    Samet Erden
    Sabah Iftikhar
    Mohsen Rostamian Delavar
    Poom Kumam
    Phatiphat Thounthong
    Wiyada Kumam
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [9] On generalizations of some inequalities for convex functions via quantum integrals
    Erden, Samet
    Iftikhar, Sabah
    Delavar, Mohsen Rostamian
    Kumam, Poom
    Thounthong, Phatiphat
    Kumam, Wiyada
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [10] Some Quantum Integral Inequalities for (p, h)-Convex Functions
    Kantalo, Jirawat
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Budak, Huseyin
    [J]. MATHEMATICS, 2023, 11 (05)