Some Quantum Integral Inequalities for (p, h)-Convex Functions

被引:0
|
作者
Kantalo, Jirawat [1 ]
Wannalookkhee, Fongchan [2 ]
Nonlaopon, Kamsing [2 ]
Budak, Huseyin [3 ]
机构
[1] Sakon Nakhon Rajabhat Univ, Fac Sci & Technol, Dept Math & Stat, Sakon Nakhon 47000, Thailand
[2] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[3] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
关键词
Hermite-Hadamard inequality; (p; h)-convex function; q-derivative; q-integral; q-calculus;
D O I
10.3390/math11051072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive an identity of the q-definite integral of a continuous function f on a finite interval. We then use such identity to prove some new quantum integral inequalities for (p,h)-convex function. The results obtained in this paper generalize previous work in the literature.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Some general quantum integral inequalities for convex functions
    Baidar, Abdul Wakil
    Kunt, Mehmet
    FILOMAT, 2024, 38 (14) : 5127 - 5140
  • [2] Some Integral Inequalities for p-Convex Functions
    Noor, Muhammad Aslam
    Awan, Muhammad Uzair
    Noor, Khalida Inayat
    Postolache, Mihai
    FILOMAT, 2016, 30 (09) : 2435 - 2444
  • [3] On the (p,h)-convex function and some integral inequalities
    Zhong Bo Fang
    Renjie Shi
    Journal of Inequalities and Applications, 2014
  • [4] On the (p, h)-convex function and some integral inequalities
    Fang, Zhong Bo
    Shi, Renjie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 781 - 793
  • [6] SOME INTEGRAL INEQUALITIES FOR HARMONICALLY h-CONVEX FUNCTIONS
    Noor, M. Aslam
    Noor, K. Inayat
    Awan, M. Uzair
    Costache, Simona
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (01): : 5 - 16
  • [7] Some integral inequalities for harmonically h-convex functions
    Noor, M. Aslam
    Noor, K. Inayat
    Awan, M. Uzair
    Costache, Simona
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2015, 77 (01): : 5 - 16
  • [8] SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Kavurmaci, Havva
    Avci, Merve
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (03): : 253 - 259
  • [9] A new generalization of some quantum integral inequalities for quantum differentiable convex functions
    Yi-Xia Li
    Muhammad Aamir Ali
    Hüseyin Budak
    Mujahid Abbas
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [10] A new generalization of some quantum integral inequalities for quantum differentiable convex functions
    Li, Yi-Xia
    Ali, Muhammad Aamir
    Budak, Huseyin
    Abbas, Mujahid
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)