A Machine Learning Approach for Linux Malware Detection

被引:0
|
作者
Asmitha, K. A. [1 ]
Vinod, P. [1 ]
机构
[1] SCMS Sch Engn & Technol, Dept Comp Sci & Engn, Ernakulam, Kerala, India
关键词
dynamic analysis; system call; feature selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing number of malware is becoming a serious threat to the private data as well as to the expensive computer resources. Linux is a Unix based machine and gained popularity in recent years. The malware attack targeting Linux has been increased recently and the existing malware detection methods are insufficient to detect malware efficiently. We are introducing a novel approach using machine learning for identifying malicious Executable Linkable Files. The system calls are extracted dynamically using system call tracer Strace. In this approach we identified best feature set of benign and malware specimens to built classification model that can classify malware and benign efficiently. The experimental results are promising which depict a classification accuracy of 97% to identify malicious samples.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 50 条
  • [41] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [42] Study on Machine Learning Techniques for Malware Classification and Detection
    Moon, Jaewoong
    Kim, Subin
    Song, Jaeseung
    Kim, Kyungshin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (12): : 4308 - 4325
  • [43] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [44] Detection of Malware in the Network Using Machine Learning Techniques
    Yogesh, B.
    Reddy, G.Suresh
    Proceedings - 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems, ICMACC 2022, 2022, : 204 - 211
  • [45] Evaluation of machine learning classifiers for mobile malware detection
    Narudin, Fairuz Amalina
    Feizollah, Ali
    Anuar, Nor Badrul
    Gani, Abdullah
    SOFT COMPUTING, 2016, 20 (01) : 343 - 357
  • [46] Machine Learning Based Improved Malware Detection Schemes
    Priyadarshan, Pradosh
    Sarangi, Prateek
    Ratht, Adyasha
    Rath, Adyasha
    Panda, Ganapati
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 925 - 931
  • [47] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)
  • [48] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [49] A Survey of Malware Detection Techniques based on Machine Learning
    El Merabet, Hoda
    Hajraoui, Abderrahmane
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (01) : 366 - 373
  • [50] Enhancing Obfuscated Malware Detection with Machine Learning Techniques
    Dang, Quang-Vinh
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 731 - 738