Order conditions for linearly implicit fractional step Runge-Kutta methods

被引:2
|
作者
Bujanda, B. [1 ]
Jorge, J. C. [1 ]
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona, Spain
关键词
fractional step methods; order conditions; linearly implicit methods;
D O I
10.1093/imanum/drm004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the consistency of a variant of fractional step Runge-Kutta methods. These methods are designed to integrate efficiently semi-linear multidimensional parabolic problems by means of linearly implicit time integration processes. Such time discretization procedures are also related to a splitting of the space differential operator (or the spatial discretization of it) as a sum of 'simpler' linear differential operators and a nonlinear term.
引用
收藏
页码:781 / 797
页数:17
相关论文
共 50 条
  • [21] The effective order of singly-implicit Runge-Kutta methods
    J.C. Butcher
    P. Chartier
    Numerical Algorithms, 1999, 20 : 269 - 284
  • [22] PRECONDITIONING OF IMPLICIT RUNGE-KUTTA METHODS
    Jay, Laurent O.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2009, 10 (04): : 363 - 372
  • [23] Implementation of high-order implicit Runge-Kutta methods
    González-Pinto, S
    Pérez-Rodríguez, S
    Montijano, JI
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (7-8) : 1009 - 1024
  • [24] ORDER RESULTS FOR MONO-IMPLICIT RUNGE-KUTTA METHODS
    BURRAGE, K
    CHIPMAN, FH
    MUIR, PH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) : 876 - 891
  • [25] The effective order of singly-implicit Runge-Kutta methods
    Butcher, JC
    Chartier, P
    NUMERICAL ALGORITHMS, 1999, 20 (04) : 269 - 284
  • [26] ON THE ORDER CONDITIONS OF RUNGE-KUTTA METHODS WITH HIGHER DERIVATIVES
    GEKELER, E
    WIDMANN, R
    NUMERISCHE MATHEMATIK, 1986, 50 (02) : 183 - 203
  • [27] Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations
    Calvo, MP
    de Frutos, J
    Novo, J
    APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) : 535 - 549
  • [28] RUNGE-KUTTA METHOD WITH IMPLICIT COMPUTING STEP
    MANNSHARDT, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04): : 251 - 253
  • [29] An efficient way to avoid the order reduction of linearly implicit Runge-Kutta methods for nonlinear IBVP's
    Calvo, MP
    de Frutos, J
    Novo, J
    MODELING, SIMULATION, AND OPTIMIZATION OF INTEGRATED CIRCUITS, 2003, 146 : 321 - 332
  • [30] STUDY OF B-CONVERGENCE OF LINEARLY IMPLICIT RUNGE-KUTTA METHODS.
    Strehmel, K.
    Weiner, R.
    Dannehl, I.
    Computing (Vienna/New York), 1988, 40 (03): : 241 - 253