Predictive models for identification of gravitational waves by applying data from LIGO observatory

被引:1
|
作者
Skeivalas, J. [1 ]
Turla, V. [2 ]
Jurevicius, M. [3 ]
机构
[1] Vilnius Gediminas Syst Univ, Dept Geodesy & Cadastre, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
[2] Vilnius Gediminas Syst Univ, Dept Mechatron Robot & Digital Mfg, Basanaviciaus 28, LT-03224 Vilnius, Lithuania
[3] Vilnius Gediminas Syst Univ, Dept Mech & Mat Engn, Basanaviciaus 28, LT-03224 Vilnius, Lithuania
关键词
Gravitational waves; Covariance function; Quantised interval; The Doppler formula; 02; 50; Ey; Fz; 13; 85; Tp; 42; 30; -d;
D O I
10.1007/s12648-019-01459-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper explores the possibility of identifying gravitational waves by statistically processing data obtained from the experiment performed by the Laser Interferometer Gravitational-Wave Observatory (LIGO observatory). For an analysis of the measurement data arrays, the parameter z from the Doppler formula and the theory of covariance functions has been used. The trend of oscillation vectors of detectors obtained at the Hanford and Livingston observatories was assessed by applying the least square method. In addition, this procedure partially eliminates random errors in the data obtained from measurements carried out by the observatory. Upon assessment of the impact of gravitational waves on the changes in the values of the parameters of interferometer laser beams, the estimates of the auto-covariance and cross-covariance functions of vibration vectors of detectors measured at the observatories were calculated by varying the quantised interval on the time scale. The covariance of algebraic addition of relevant vectors and single vectors was used in the calculation of the estimates of covariance functions. The average value of the parameter z from the Doppler formula was calculated according to the formula created by using the expression of cross-covariance function of algebraic addition Hanford Gravitational Wave-Livingston Gravitational Wave (HGW-LGW) vector and single LGW vector. The speed and the direction of spread of the gravitational waves' component HGW -> LGW in respect of the vector of the gravitational waves were established. The calculations were performed using the author's original software based on MATLAB procedures.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [41] Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars
    Cullen, Torrey
    Harry, Ian
    Read, Jocelyn
    Flynn, Eric
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (24)
  • [42] Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abernathy, M.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Ceron, E. Amador
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Antonucci, F.
    Arain, M. A.
    Araya, M.
    Aronsson, M.
    Arun, K. G.
    Aso, Y.
    Aston, S.
    Astone, P.
    Atkinson, D. E.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballinger, T.
    Ballmer, S.
    Barker, D.
    Barnum, S.
    Barone, F.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Bauchrowitz, J.
    Bauer, Th. S.
    Behnke, B.
    Beker, M. G.
    Belletoile, A.
    Benacquista, M.
    Bertolini, A.
    Betzwieser, J.
    PHYSICAL REVIEW D, 2010, 82 (10):
  • [43] Directed searches for continuous gravitational waves from twelve supernova remnants in data from Advanced LIGO's second observing run
    Lindblom, Lee
    Owen, Benjamin J.
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [44] Directed searches for continuous gravitational waves from twelve supernova remnants in data from Advanced LIGO's second observing run
    Lindblom, Lee
    Owen, Benjamin J.
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [45] LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES
    Demorest, P. B.
    Ferdman, R. D.
    Gonzalez, M. E.
    Nice, D.
    Ransom, S.
    Stairs, I. H.
    Arzoumanian, Z.
    Brazier, A.
    Burke-Spolaor, S.
    Chamberlin, S. J.
    Cordes, J. M.
    Ellis, J.
    Finn, L. S.
    Freire, P.
    Giampanis, S.
    Jenet, F.
    Kaspi, V. M.
    Lazio, J.
    Lommen, A. N.
    McLaughlin, M.
    Palliyaguru, N.
    Perrodin, D.
    Shannon, R. M.
    Siemens, X.
    Stinebring, D.
    Swiggum, J.
    Zhu, W. W.
    ASTROPHYSICAL JOURNAL, 2013, 762 (02):
  • [46] Search for Gravitational Waves from Scorpius X-1 in LIGO O3 Data with Corrected Orbital Ephemeris
    Whelan, John T.
    Tenorio, Rodrigo
    Wofford, Jared K.
    Clark, James A.
    Daw, Edward J.
    Goetz, Evan
    Keitel, David
    Neunzert, Ansel
    Sintes, Alicia M.
    Wagner, Katelyn J.
    Woan, Graham
    Killestein, Thomas L.
    Steeghs, Danny
    ASTROPHYSICAL JOURNAL, 2023, 949 (02):
  • [47] Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data
    Abbott, R.
    Abe, H.
    Acernese, F.
    Ackley, K.
    Adhikari, N.
    Adhikari, R. X.
    Adkins, V. K.
    Adya, V. B.
    Affeldt, C.
    Agarwal, D.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akutsu, T.
    Albanesi, S.
    Alfaidi, R. A.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Anand, C.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Ando, M.
    Andrade, T.
    Andres, N.
    Andres-Carcasona, M.
    Andric, T.
    Angelova, S. V.
    Ansoldi, S.
    Antelis, J. M.
    Antier, S.
    Apostolatos, T.
    Appavuravther, E. Z.
    Appert, S.
    Apple, S. K.
    Arai, K.
    Araya, A.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Aritomi, N.
    Arnaud, N.
    Arogeti, M.
    Aronson, S. M.
    PHYSICAL REVIEW D, 2022, 106 (06)
  • [48] Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data
    Abbott, B. P.
    Abbott, R.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Aso, Y.
    Aston, S.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballmer, S.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Behnke, B.
    Benacquista, M.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bilenko, I. A.
    Billingsley, G.
    Biswas, R.
    Black, E.
    Blackburn, J. K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bodiya, T. P.
    Bogue, L.
    Bork, R.
    Boschi, V.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Bridges, D. O.
    PHYSICAL REVIEW D, 2009, 79 (12)
  • [49] Loosely coherent search in LIGO O1 data for continuous gravitational waves from Terzan 5 and the Galactic Center
    Dergachev, Vladimir
    Papa, Maria Alessandra
    Steltner, Benjamin
    Eggenstein, Heinz-Bernd
    PHYSICAL REVIEW D, 2019, 99 (08)
  • [50] Einstein@Home search for periodic gravitational waves in early S5 LIGO data
    Abbott, B. P.
    Abbott, R.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Aso, Y.
    Aston, S.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballmer, S.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Behnke, B.
    Benacquista, M.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bilenko, I. A.
    Billingsley, G.
    Biswas, R.
    Black, E.
    Blackburn, J. K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bodiya, T. P.
    Bogue, L.
    Bork, R.
    Boschi, V.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Bridges, D. O.
    PHYSICAL REVIEW D, 2009, 80 (04):