Evolutionary system identification via descriptive Takagi Sugeno fuzzy systems

被引:0
|
作者
Renners, I [1 ]
Grauel, A [1 ]
机构
[1] Univ Appl Sci, Dept Math, Ctr Computat Intelligence & Cognit Sci, D-59494 Soest, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
System identification is used to identify relevant input-output space relations. In this article the relations are used to model a descriptive Takagi-Sugeno fuzzy system. Basic terms of system identification, fuzzy systems and evolutionary computation are briefly reviewed. These concepts are used to present the implementation of an evolutionary algorithm which identifies (sub)optimal descriptive Takagi-Sugeno fuzzy systems according to given data. The proposed evolutionary algorithm is tested on the well known gas furnace data set and results are presented.
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [41] Nonlinear system identification using Takagi-Sugeno-Kang type interval-valued fuzzy systems via stable learning mechanism
    Lee, Ching-Hung
    Lee, Yi-Han
    IAENG International Journal of Computer Science, 2011, 38 (03) : 249 - 259
  • [42] Multilabel Takagi-Sugeno-Kang Fuzzy System
    Lou, Qiongdan
    Deng, Zhaohong
    Xiao, Zhiyong
    Choi, Kup-Sze
    Wang, Shitong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3410 - 3425
  • [43] Alternative LMI conditions for Takagi-Sugeno systems via fuzzy lyapunov function
    Mozelli L.A.
    De Avellar G.S.C.
    Palhares R.M.
    Dos Santos R.F.
    Controle y Automacao, 2010, 21 (01): : 96 - 107
  • [44] Improved Stability and Stabilization Conditions for Takagi-Sugeno Fuzzy Systems via Fuzzy Lyapunov Functions
    Liu, Guojun
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3063 - 3067
  • [45] A New Strategy for Fault Estimation in Takagi-Sugeno Fuzzy Systems via a Fuzzy Learning Observer
    Jia, Qingxian
    Chen, Wen
    Jin, Yi
    Zhang, Yingchun
    Li, Huayi
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3228 - 3233
  • [46] Improved Stabilization Conditions for Takagi-Sugeno Fuzzy Systems via Fuzzy Integral Lyapunov Functions
    Tognetti, Eduardo S.
    Oliveira, Ricardo C. L. F.
    Peres, Pedro L. D.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 4970 - 4975
  • [47] Identification of rhubarb samples by using NIR spectrometry and Takagi-Sugeno fuzzy system
    Zhang, ZY
    Tang, YF
    Fan, GQ
    SPECTROSCOPY LETTERS, 2005, 38 (4-5) : 447 - 457
  • [48] SVM clustering for identification of Takagi-Sugeno fuzzy models
    González-Mendoza, M
    Hernández-Gress, N
    Titli, A
    INTELLIGENT COMPONENTS AND INSTRUMENTS FOR CONTROL APPLICATIONS 2003, 2003, : 209 - 214
  • [49] A novel identification method for Takagi-Sugeno fuzzy model
    Tsai, Shun-Hung
    Chen, Yu-Wen
    FUZZY SETS AND SYSTEMS, 2018, 338 : 117 - 135
  • [50] Takagi-Sugeno Fuzzy Hopfield Neural Networks for H∞ Nonlinear System Identification
    Ahn, Choon Ki
    NEURAL PROCESSING LETTERS, 2011, 34 (01) : 59 - 70