A transient analysis to the M(τ)/M(τ)/k queue with time-dependent parameters

被引:0
|
作者
El-Paoumy, Mahdy Shibl [1 ]
Alqawba, Mohammed [2 ]
Radwan, Taha [2 ,3 ]
机构
[1] Al Azhar Univ, Fac Commerce, Dept Stat, Girls Branch, Dkhlia, Egypt
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
[3] Port Said Univ, Fac Management Technol & Informat Syst, Dept Math & Stat, Port Said, Egypt
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
关键词
balking; catastrophes; generating function; multi-server queue; time-dependent queue; Volterra equation; APPROXIMATION; RATES;
D O I
10.1515/math-2021-0126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work considers the infinite multi-server Markovian queueing model with balking and catastrophes where the rates of arrivals, service, balking, and catastrophes are time dependent. The catastrophes arrive as negative customers to the system. The arrival of negative customers to a queueing system removes the positive customers. The catastrophes may come either from another service station or from outside the system. In this paper, we obtained the transient solution of this model using the approach of probability-generating function. Also, we derived an expression of transient probabilities in terms of Volterra equation of the second kind. Furthermore, we obtained a measure for time-dependent expected number of customers in the system.
引用
收藏
页码:1476 / 1485
页数:10
相关论文
共 50 条
  • [31] Transient solution of an M/M/1 queue with catastrophes
    Kumar, BK
    Arivudainambi, D
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (10-11) : 1233 - 1240
  • [32] Asymptotic analysis of the M/G/1 queue with a time‐dependent arrival rate
    Yongzhi (Peter) Yang
    Charles Knessl
    [J]. Queueing Systems, 1997, 26 : 23 - 68
  • [33] Computation of the transient solution of M/M/1 queue
    J. L. Jain
    A. Jiran Meitei
    [J]. OPSEARCH, 2007, 44 (1) : 100 - 113
  • [34] Waiting time distribution for the M/M/m queue
    Chan, WC
    Lin, YB
    [J]. IEE PROCEEDINGS-COMMUNICATIONS, 2003, 150 (03): : 159 - 162
  • [35] DISTRIBUTION OF MEAN QUEUE SIZE FOR TIME-DEPENDENT QUEUE
    ALI, H
    [J]. OPERATIONS RESEARCH, 1973, 21 (02) : 636 - 638
  • [36] Mθ/G/1/m and Mθ/G/1 systems with the service time dependent on the queue length
    K. Yu. Zhernovyi
    Yu. V. Zhernovyi
    [J]. Journal of Communications Technology and Electronics, 2013, 58 : 1267 - 1275
  • [37] Transient Analysis of an M/M/1 Queue with Reneging, Catastrophes, Server Failures and Repairs
    Sampath, M. I. G. Suranga
    Liu, Jicheng
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) : 585 - 603
  • [38] Transient analysis of an M/M/1 queue with variant impatient behavior and working vacations
    Sudhesh, R.
    Azhagappan, A.
    [J]. OPSEARCH, 2018, 55 (3-4) : 787 - 806
  • [39] Transient analysis of impatient customers in an M/M/1 disasters queue in random environment
    Ammar, Sherif, I
    Jiang, Tao
    Ye, Qingqing
    [J]. ENGINEERING COMPUTATIONS, 2020, 37 (06) : 1945 - 1965
  • [40] Transient Analysis of an M/M/1 Queue with Reneging, Catastrophes, Server Failures and Repairs
    M. I. G. Suranga Sampath
    Jicheng Liu
    [J]. Bulletin of the Iranian Mathematical Society, 2018, 44 : 585 - 603