A transient analysis to the M(τ)/M(τ)/k queue with time-dependent parameters

被引:0
|
作者
El-Paoumy, Mahdy Shibl [1 ]
Alqawba, Mohammed [2 ]
Radwan, Taha [2 ,3 ]
机构
[1] Al Azhar Univ, Fac Commerce, Dept Stat, Girls Branch, Dkhlia, Egypt
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
[3] Port Said Univ, Fac Management Technol & Informat Syst, Dept Math & Stat, Port Said, Egypt
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
关键词
balking; catastrophes; generating function; multi-server queue; time-dependent queue; Volterra equation; APPROXIMATION; RATES;
D O I
10.1515/math-2021-0126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work considers the infinite multi-server Markovian queueing model with balking and catastrophes where the rates of arrivals, service, balking, and catastrophes are time dependent. The catastrophes arrive as negative customers to the system. The arrival of negative customers to a queueing system removes the positive customers. The catastrophes may come either from another service station or from outside the system. In this paper, we obtained the transient solution of this model using the approach of probability-generating function. Also, we derived an expression of transient probabilities in terms of Volterra equation of the second kind. Furthermore, we obtained a measure for time-dependent expected number of customers in the system.
引用
收藏
页码:1476 / 1485
页数:10
相关论文
共 50 条
  • [1] ASYMPTOTIC ANALYSIS OF THE TIME-DEPENDENT M/M/1 QUEUE
    MASSEY, WA
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (02) : 305 - 327
  • [2] A transient symmetry analysis for the M/M/1/k queue
    Massey, William A.
    Ekwedike, Emmanuel
    Hampshire, Robert C.
    Pender, Jamol J.
    [J]. QUEUEING SYSTEMS, 2023, 103 (1-2) : 1 - 43
  • [3] A transient symmetry analysis for the M/M/1/k queue
    William A. Massey
    Emmanuel Ekwedike
    Robert C. Hampshire
    Jamol J. Pender
    [J]. Queueing Systems, 2023, 103 : 1 - 43
  • [4] SIMPLE APPROXIMATION TO AVERAGE QUEUE SIZE IN TIME-DEPENDENT M-M-1 QUEUE
    RIDER, KL
    [J]. JOURNAL OF THE ACM, 1976, 23 (02) : 361 - 367
  • [5] THE TRANSIENT SOLUTION OF TIME-DEPENDENT M/M/1 QUEUES
    ZHANG, J
    COYLE, EJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1690 - 1696
  • [6] CALCULATING TIME-DEPENDENT PERFORMANCE-MEASURES FOR THE M/M/1 QUEUE
    ABATE, J
    WHITT, W
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (10) : 1102 - 1104
  • [7] Asymptotic analysis of the M/G/1 queue with a time-dependent arrival rate
    Yang, YZ
    Knessl, C
    [J]. QUEUEING SYSTEMS, 1997, 26 (1-2) : 23 - 68
  • [8] Exact time-dependent solutions for the M/D/1 queue
    Baek, Jung Woo
    Lee, Ho Woo
    Ahn, Soohan
    Bae, Yun Han
    [J]. OPERATIONS RESEARCH LETTERS, 2016, 44 (05) : 692 - 695
  • [9] TRANSIENT ANALYSIS OF THE M/M/1 QUEUE
    LEGUESDRON, P
    PELLAUMAIL, J
    RUBINO, G
    SERICOLA, B
    [J]. ADVANCES IN APPLIED PROBABILITY, 1993, 25 (03) : 702 - 713
  • [10] A time-dependent busy period queue length formula for the M/Ek/1 queue
    Baek, Jung Woo
    Moon, Seung Ki
    Lee, Ho Woo
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 87 : 98 - 104