Linear Mode Stability of the Kerr-Newman Black Hole and Its Quasinormal Modes

被引:64
|
作者
Dias, Oscar J. C. [1 ]
Godazgar, Mahdi [2 ]
Santos, Jorge E. [2 ]
机构
[1] Univ Southampton, STAG Res Ctr & Math Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
ELECTROMAGNETIC-RADIATION; PERTURBATIONS; FREQUENCIES;
D O I
10.1103/PhysRevLett.114.151101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational l = m = 2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and l measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with l = m approach Re omega = m Omega(ext)(H) and Im omega = 0 at extremality; this is a universal property for any field of arbitrary spin vertical bar s vertical bar <= 2 propagating on a KNBH background (omega is the wave frequency and Omega(ext)(H) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] Spinning Particle as Kerr-Newman "Black Hole"
    Burinskii, A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 724 - 729
  • [22] Rindler approximation to Kerr-Newman black hole
    Camargo, H. A.
    Socolovsky, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 6
  • [23] Kerr-Newman black hole as spinning particle
    Burinskii, Alexander
    XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435
  • [24] Statistical entropy of Kerr-Newman black hole
    Zhao, R
    Zhang, LC
    ACTA PHYSICA SINICA, 2002, 51 (06) : 1167 - 1170
  • [25] Quantization of Kerr-Newman Black Hole Entropy
    Guang-Hui Zhao
    Chuan-An Li
    International Journal of Theoretical Physics, 2017, 56 : 2450 - 2457
  • [26] Entropy correction to Kerr-Newman black hole
    Zeng Xiao-Xiong
    ACTA PHYSICA SINICA, 2010, 59 (01) : 92 - 96
  • [27] Gravitational collapse to a Kerr-Newman black hole
    Nathanail, Antonios
    Most, Elias R.
    Rezzolla, Luciano
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (01) : L31 - L35
  • [28] Kretschmann scalar for a Kerr-Newman black hole
    Henry, RC
    ASTROPHYSICAL JOURNAL, 2000, 535 (01): : 350 - 353
  • [29] Hawking radiation of Kerr-Newman black hole
    Zhao Ren
    Zhang Li-Chun
    Li Huai-Fan
    ACTA PHYSICA SINICA, 2010, 59 (05) : 2982 - 2986
  • [30] Quantum spectrum for a Kerr-Newman black hole
    Gour, G
    Medved, AJM
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (09) : 1661 - 1671