Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors

被引:1721
|
作者
Wang, Xinran [1 ,2 ]
Ouyang, Yijian [3 ]
Li, Xiaolin [1 ,2 ]
Wang, Hailiang [1 ,2 ]
Guo, Jing [3 ]
Dai, Hongjie [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Adv Mat Lab, Stanford, CA 94305 USA
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
D O I
10.1103/PhysRevLett.100.206803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sub-10 nm wide graphene nanoribbon field-effect transistors (GNRFETs) are studied systematically. All sub-10 nm GNRs afforded semiconducting FETs without exception, with I-on/I-off ratio up to 10(6) and on-state current density as high as similar to 2000 mu A/mu m. We estimated carrier mobility similar to 200 cm(2)/V s and scattering mean free path similar to 10 nm in sub-10 nm GNRs. Scattering mechanisms by edges, acoustic phonon, and defects are discussed. The sub-10 nm GNRFETs are comparable to small diameter (d <=similar to 1.2 nm) carbon nanotube FETs with Pd contacts in on-state current density and I-on/I-off ratio, but have the advantage of producing all-semiconducting devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Hwang, Wan Sik
    Zhao, Pei
    Kim, Sung Geun
    Yan, Rusen
    Klimeck, Gerhard
    Seabaugh, Alan
    Fullerton-Shirey, Susan K.
    Xing, Huili Grace
    Jena, Debdeep
    [J]. NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [2] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Wan Sik Hwang
    Pei Zhao
    Sung Geun Kim
    Rusen Yan
    Gerhard Klimeck
    Alan Seabaugh
    Susan K. Fullerton-Shirey
    Huili Grace Xing
    Debdeep Jena
    [J]. npj 2D Materials and Applications, 3
  • [3] Electrical transport of sub-10-nm graphene nanoribbon array field-effect transistors fabricated by block copolymer nanolithography
    Son, Myungwoo
    Son, Jeong Gon
    Ross, Caroline
    Ham, Moon-Ho
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [4] Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors
    Lin, Ming-Wei
    Ling, Cheng
    Zhang, Yiyang
    Yoon, Hyeun Joong
    Cheng, Mark Ming-Cheng
    Agapito, Luis A.
    Kioussis, Nicholas
    Widjaja, Noppi
    Zhou, Zhixian
    [J]. NANOTECHNOLOGY, 2011, 22 (26)
  • [5] Sub-10-nm Asymmetric Junctionless Tunnel Field-Effect Transistors
    Shih, Chun-Hsing
    Nguyen Van Kien
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2014, 2 (05): : 128 - 132
  • [6] Pentacene field-effect transistors with sub-10-nm channel lengths
    Wang, L
    Fine, D
    Jung, TH
    Basu, D
    von Seggern, H
    Dodabalapur, A
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (10) : 1772 - 1774
  • [7] Sub-10-nm Silicene Nanoribbon Field Effect Transistor
    Kharadi, Mubashir A.
    Malik, Gul Faroz A.
    Shah, Khurshed A.
    Khanday, Farooq A.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (11) : 4976 - 4981
  • [8] Graphene field-effect transistors as room-temperature terahertz detectors
    L. Vicarelli
    M. S. Vitiello
    D. Coquillat
    A. Lombardo
    A. C. Ferrari
    W. Knap
    M. Polini
    V. Pellegrini
    A. Tredicucci
    [J]. Nature Materials, 2012, 11 : 865 - 871
  • [9] Graphene field-effect transistors as room-temperature terahertz detectors
    Vicarelli, L.
    Vitiello, M. S.
    Coquillat, D.
    Lombardo, A.
    Ferrari, A. C.
    Knap, W.
    Polini, M.
    Pellegrini, V.
    Tredicucci, A.
    [J]. NATURE MATERIALS, 2012, 11 (10) : 865 - 871
  • [10] Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography
    Son, Jeong Gon
    Son, Myungwoo
    Moon, Kyeong-Joo
    Lee, Byoung Hun
    Myoung, Jae-Min
    Strano, Michael S.
    Ham, Moon-Ho
    Ross, Caroline A.
    [J]. ADVANCED MATERIALS, 2013, 25 (34) : 4723 - 4728