Local topology of cubic Newton, methods: the parameter plane

被引:4
|
作者
Roesch, P [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 07, France
关键词
D O I
10.1016/S0764-4442(99)80154-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cubic Newton's methods are rational maps having three distinct super-attracting fixed points and a single free critical point. They form, rep to conjugation, a family N-lambda parametrized by Lambda = C\{0, +/-3/2}, and we denote by H-0 the set of lambda for which the free critical point of N-lambda is in the immediate basin of one of the super-attracting fixed points. In this Note, we show that the boundary of each connected component of H-0 is a Jordan curve. For this, we determine in Lambda regions on which the dynamics of N-lambda can be described by a fixed combinatorial model. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条
  • [41] Local convergence of quasi-Newton methods under metric regularity
    Artacho, F. J. Aragon
    Belyakov, A.
    Dontchev, A. L.
    Lopez, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (01) : 225 - 247
  • [42] On the local convergence of quasi-Newton methods for nonlinear complementarity problems
    Lopes, VLR
    Martínez, JM
    Pérez, R
    APPLIED NUMERICAL MATHEMATICS, 1999, 30 (01) : 3 - 22
  • [43] Local convergence of quasi-Newton methods under metric regularity
    F. J. Aragón Artacho
    A. Belyakov
    A. L. Dontchev
    M. López
    Computational Optimization and Applications, 2014, 58 : 225 - 247
  • [44] Local convergence of inexact Newton-like-iterative methods and applications
    Argyros, IK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) : 69 - 75
  • [45] Local bifurcations of plane running waves for the generalized cubic Schrödinger equation
    A. N. Kulikov
    D. A. Kulikov
    Differential Equations, 2010, 46 : 1299 - 1308
  • [46] LOCAL TOPOLOGICAL-STRUCTURE OF THE PLANE CUBIC SYSTEM IN THE UNDETERMINED SIGN CASE
    LI, XM
    YANG, DW
    ACTA MATHEMATICA SCIENTIA, 1995, 15 (01) : 113 - 120
  • [47] Parameter adaptation of simplified switched reluctance motor model using Newton and Gauss-Newton signal fitting methods
    Fabianski, Bogdan
    Zawirski, Krzysztof
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2017, 36 (03) : 602 - 618
  • [48] Moduli space of cubic Newton maps
    Roesch, Pascale
    Wang, Xiaoguang
    Yin, Yongcheng
    ADVANCES IN MATHEMATICS, 2017, 322 : 1 - 59
  • [49] Stochastic Subspace Cubic Newton Method
    Hanzely, Filip
    Doikov, Nikita
    Richtarik, Peter
    Nesterov, Yurii
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [50] A FORM OF NEWTON METHOD WITH CUBIC CONVERGENCE
    STONE, WM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (05) : 572 - 573