Local topology of cubic Newton, methods: the parameter plane

被引:4
|
作者
Roesch, P [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, F-69364 Lyon 07, France
关键词
D O I
10.1016/S0764-4442(99)80154-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cubic Newton's methods are rational maps having three distinct super-attracting fixed points and a single free critical point. They form, rep to conjugation, a family N-lambda parametrized by Lambda = C\{0, +/-3/2}, and we denote by H-0 the set of lambda for which the free critical point of N-lambda is in the immediate basin of one of the super-attracting fixed points. In this Note, we show that the boundary of each connected component of H-0 is a Jordan curve. For this, we determine in Lambda regions on which the dynamics of N-lambda can be described by a fixed combinatorial model. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 50 条
  • [1] Local topology of cubic Newton methods: dynamical plan
    Roesch, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10): : 1221 - 1226
  • [2] On modified Newton methods with cubic convergence
    Kou, J
    Li, YT
    Wang, XH
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 123 - 127
  • [3] On Newton-type methods with cubic convergence
    Homeier, HHH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (02) : 425 - 432
  • [4] A NEW FAMILY OF MODIFIED NEWTON METHODS WITH CUBIC CONVERGENCE
    Lu, Yanjian
    Xu, Xiubin
    FIXED POINT THEORY, 2007, 8 (01): : 47 - 57
  • [5] Approximate Newton Methods and Their Local Convergence
    Ye, Haishan
    Luo, Luo
    Zhang, Zhihua
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] Local convergence theorems for Newton methods
    Ioannis K. Argyros
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (2): : 253 - 268
  • [7] LOCAL CONVERGENCE OF INEXACT NEWTON METHODS
    YPMA, TJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (03) : 583 - 590
  • [8] Stochastic Variance-Reduced Cubic Regularized Newton Methods
    Zhou, Dongruo
    Xu, Pan
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] MODIFIED NEWTON'S METHODS OF CUBIC CONVERGENCE FOR MULTIPLE ROOTS
    Lee, Siyul
    Kim, Young-Hee
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 516 - 525
  • [10] On Newton-type methods for multiple roots with cubic convergence
    Homeier, H. H. H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 249 - 254