How do graphite nanoplates affect the fracture toughness of polypropylene composites?

被引:24
|
作者
Herrera-Ramirez, Luis C. [1 ]
Castell, Pere [2 ]
Fernandez-Blazquez, Juan P. [1 ]
Fernandez, Angel [2 ,3 ]
Guzman de Villoria, Roberto [1 ]
机构
[1] IMDEA Mat Inst, Madrid 28906, Spain
[2] Fdn AITIIP, Pol Ind Empresarium, Zaragoza 50720, Spain
[3] Univ Zaragoza, Escuela Ingn & Arquitectura, Zaragoza 50018, Spain
关键词
Graphite nanoplates; Polymer-matrix composites (PMCs); Fracture toughness; Plastic deformation; Fractography; LOAD SEPARATION CRITERION; WALLED CARBON NANOTUBES; ISOTACTIC POLYPROPYLENE; MECHANICAL-PROPERTIES; NANOCOMPOSITES; DISPERSION; GRAPHENE; PARTICLES; POLYMERS; BEHAVIOR;
D O I
10.1016/j.compscitech.2015.02.017
中图分类号
TB33 [复合材料];
学科分类号
摘要
From a mechanical perspective, graphene and its derivatives, such as graphite nanoplates, graphite oxide, carbon nanofibers, or nanotubes, are envisioned as ideal nanofillers for polymer composites. Thus, tremendous research effort has been invested to determine the reinforcing mechanism of these nanofillers in the matrix: crack bridging, crystallization enhancement, or crack deflection are some possible mechanisms that have been proposed. In this work, a detailed analysis of the fracture mechanism of graphite nanoplate (GNP)/polypropylene composites was performed. Commercially available graphite nanoplates, composed of multiple graphene layers stacked together, were used to produce polypropylene nanocomposites by following a masterbatch technique. The fracture toughness was determined by applying the S-pb parameter method and the fracture mechanism was identified to be void nucleation and growth. We demonstrate how GNPs affect and improve the fracture toughness of polypropylene. This improvement is caused by the debonding of the GNP agglomerates, which promotes the matrix plastic deformation during the fracture process. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [21] Impact fracture toughness of hollow glass bead-filled polypropylene composites
    Liang, Ji-Zhao
    [J]. JOURNAL OF MATERIALS SCIENCE, 2007, 42 (03) : 841 - 846
  • [22] Impact fracture toughness of hollow glass bead-filled polypropylene composites
    Ji-Zhao Liang
    [J]. Journal of Materials Science, 2007, 42 : 841 - 846
  • [23] FRACTURE-TOUGHNESS CHARACTERISTICS OF THICK WALL GRAPHITE EPOXY STRUCTURAL COMPOSITES
    RIDDLE, RA
    BECKWITH, SW
    [J]. SAMPE QUARTERLY-SOCIETY FOR THE ADVANCEMENT OF MATERIAL AND PROCESS ENGINEERING, 1984, 16 (01): : 22 - 25
  • [24] INTERLAMINAR FRACTURE-TOUGHNESS OF GRAPHITE FIBER-REINFORCED POLYIMIDE COMPOSITES
    GRABILNIKOV, AS
    ZINEVICH, OM
    [J]. MECHANICS OF COMPOSITE MATERIALS, 1994, 30 (06) : 615 - 618
  • [25] Balancing the toughness and strength in polypropylene composites
    Shirvanimoghaddam, Kamyar
    Balaji, K. V.
    Yadav, Ram
    Zabihi, Omid
    Ahmadi, Mojtaba
    Adetunji, Philip
    Naebe, Minoo
    [J]. COMPOSITES PART B-ENGINEERING, 2021, 223
  • [26] Coconut coir fiber reinforced polypropylene composites: Investigation on fracture toughness and mechanical properties
    Kumar, Santosh
    Shamprasad, M. S.
    Varadarajan, Y. S.
    Sangamesha, M. A.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 2471 - 2476
  • [27] Functional composites based on polybenzimidazole and graphite nanoplates
    B. Ch. Kholkhoev
    E. N. Gorenskaya
    S. A. Bal’zhinov
    I. A. Farion
    G. N. Batorova
    A. V. Nomoev
    P. S. Timashev
    B. R. Radnaev
    R. K. Chailakhyan
    V. E. Fedorov
    V. F. Burdukovskii
    [J]. Russian Journal of Applied Chemistry, 2016, 89 : 780 - 786
  • [28] Investigation of static and dynamic fracture toughness of short ceramic fiber reinforced polypropylene composites
    Szabó, JS
    Czigány, T
    [J]. JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 2002, B41 (4-6): : 1191 - 1204
  • [29] Functional composites based on polybenzimidazole and graphite nanoplates
    Kholkhoev, B. Ch.
    Gorenskaya, E. N.
    Bal'zhinov, S. A.
    Farion, I. A.
    Batorova, G. N.
    Nomoev, A. V.
    Timashev, P. S.
    Radnaev, B. R.
    Chailakhyan, R. K.
    Fedorov, V. E.
    Burdukovskii, V. F.
    [J]. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (05) : 780 - 786
  • [30] The shear fracture toughness, KIIc, of graphite
    Burchell, Timothy D.
    Erdman, Don, III
    [J]. CARBON, 2016, 98 : 267 - 279