Gate-error analysis in simulations of quantum computers with transmon qubits

被引:35
|
作者
Willsch, D. [1 ]
Nocon, M. [1 ]
Jin, F. [1 ]
De Raedt, H. [2 ]
Michielsen, K. [1 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, Inst Adv Simulat, D-52425 Julich, Germany
[2] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[3] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
ALGORITHMS; FORMULA;
D O I
10.1103/PhysRevA.96.062302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schrodinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Quantum Crosstalk Analysis for Simultaneous Gate Operations on Superconducting Qubits
    Zhao, Peng
    Linghu, Kehuan
    Li, Zhiyuan
    Xu, Peng
    Wang, Ruixia
    Xue, Guangming
    Jin, Yirong
    Yu, Haifeng
    PRX QUANTUM, 2022, 3 (02):
  • [22] High-fidelity transmon-coupler-activated CCZ gate on fluxonium qubits
    Simakov, Ilya A.
    Mazhorin, Grigoriy S.
    Moskalenko, Ilya N.
    Seidov, Seidali S.
    Besedin, Ilya S.
    PHYSICAL REVIEW APPLIED, 2024, 21 (04):
  • [23] Robustness of error-suppressing entangling gates in cavity-coupled transmon qubits
    Deng, Xiu-Hao
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2017, 96 (03)
  • [24] Quantum information: Qubits and quantum error correction
    Bennett, CH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (02) : 153 - 176
  • [25] Quantum Information: Qubits and Quantum Error Correction
    Charles H. Bennett
    International Journal of Theoretical Physics, 2003, 42 : 153 - 176
  • [26] Performance analysis of superconductor-constriction-superconductor transmon qubits
    Liu, Mingzhao
    Black, Charles T.
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [27] Perturbative analysis of quasiperiodic patterning of transmon quantum computers: Enhancement of many-body localization
    Varvelis, Evangelos
    Divincenzo, David P.
    PHYSICAL REVIEW B, 2024, 109 (14)
  • [28] Embedded quantum-error correction and controlled-phase gate for molecular spin qubits
    Chiesa, A.
    Petiziol, F.
    Macaluso, E.
    Wimberger, S.
    Santini, P.
    Carretta, S.
    AIP ADVANCES, 2021, 11 (02)
  • [29] Quantum error correction beyond qubits
    Aoki, Takao
    Takahashi, Go
    Kajiya, Tadashi
    Yoshikawa, Jun-ichi
    Braunstein, Samuel L.
    van Loock, Peter
    Furusawa, Akira
    NATURE PHYSICS, 2009, 5 (08) : 541 - 546
  • [30] Quantum error correction beyond qubits
    Takao Aoki
    Go Takahashi
    Tadashi Kajiya
    Jun-ichi Yoshikawa
    Samuel L. Braunstein
    Peter van Loock
    Akira Furusawa
    Nature Physics, 2009, 5 (8) : 541 - 546