Gate-error analysis in simulations of quantum computers with transmon qubits

被引:35
|
作者
Willsch, D. [1 ]
Nocon, M. [1 ]
Jin, F. [1 ]
De Raedt, H. [2 ]
Michielsen, K. [1 ,3 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, Inst Adv Simulat, D-52425 Julich, Germany
[2] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[3] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
ALGORITHMS; FORMULA;
D O I
10.1103/PhysRevA.96.062302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance, and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are obtained by numerical solution of the time-dependent Schrodinger equation of the transmon system. We find that the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fragility of gate-error metrics in simulation models of flux-tunable transmon quantum computers
    Lagemann, H.
    Willsch, D.
    Willsch, M.
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [2] Single-Flux-Quantum-Activated Controlled-Z Gate for Transmon Qubits
    Wang, Y. F.
    Gao, W. P.
    Liu, K.
    Ji, B.
    Wang, Z.
    Lin, Z. R.
    PHYSICAL REVIEW APPLIED, 2023, 19 (04)
  • [3] All-Microwave Leakage Reduction Units for Quantum Error Correction with Superconducting Transmon Qubits
    Marques, J. F.
    Ali, H.
    Varbanov, B. M.
    Finkel, M.
    Veen, H. M.
    Van der Meer, S. L. M.
    Valles-Sanclemente, S.
    Muthusubramanian, N.
    Beekman, M.
    Haider, N.
    Terhal, B. M.
    DiCarlo, L.
    PHYSICAL REVIEW LETTERS, 2023, 130 (25)
  • [4] Non-Thermal Quantum Engine in Transmon Qubits
    Cherubim, Cleverson
    Brito, Frederico
    Deffner, Sebastian
    ENTROPY, 2019, 21 (06)
  • [5] Spectrum analysis with parametrically modulated transmon qubits
    Gavrielov, Nir
    Oviedo-Casado, Santiago
    Retzker, Alex
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [6] Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correction with Superconducting Transmon Qubits
    Battistel, F.
    Varbanov, B. M.
    Terhal, B. M.
    PRX QUANTUM, 2021, 2 (03):
  • [7] Unconventional Geometric Phase Gate of Transmon Qubits With Inverse Hamiltonian Engineering
    Kang, Yi-Hao
    Xia, Yan
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (03)
  • [8] Controlled-Z gate for transmon qubits coupled by semiconductor junctions
    Qi, Zhenyi
    Xie, Hong-Yi
    Shabani, Javad
    Manucharyan, Vladimir E.
    Levchenko, Alex
    Vavilov, Maxim G.
    PHYSICAL REVIEW B, 2018, 97 (13)
  • [9] Analogue Quantum Simulation with Fixed-Frequency Transmon Qubits
    Greenaway, Sean
    Smith, Adam
    Mintert, Florian
    Malz, Daniel
    QUANTUM, 2024, 8
  • [10] A Low-Power CMOS Quantum Controller for Transmon Qubits
    Bardin, J. C.
    2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,