On the good filtration dimension of Weyl modules for a linear algebraic group

被引:0
|
作者
Parker, AE [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2000, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a linear algebraic group over an algebraically closed field of characteristic p whose corresponding root system is irreducible. In this paper we calculate the Weyl filtration dimension of the induced G-modules, del(lambda) and the simple G-modules L(lambda), for lambda a regular weight. We use this to calculate some Ext groups of the form Ext*(del(lambda),Delta(mu)), Ext*(L(lambda),L(mu)), and Ext*(del(lambda),del(mu)), where lambda,mu are regular and Delta(mu) is the Weyl module of highest weight p. We then deduce the projective dimensions and injective dimensions for L(lambda), del(lambda) and Delta(lambda) for lambda a regular weight in associated generalised Schur algebras. We also deduce the global dimension of the Schur algebras for GL(n), S(n, r), when p > n and for S(mp, p) with in an integer.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条