Emergent models, frameworks, and hardware technologies for Big data analytics

被引:5
|
作者
Groppe, Sven [1 ]
机构
[1] Univ Lubeck, Inst Informat Syst, Ratzeburger Allee 160, D-23562 Lubeck, Germany
来源
JOURNAL OF SUPERCOMPUTING | 2020年 / 76卷 / 03期
关键词
Big data; Computer architectures; FPGA; GPU; Cloud Computing; Fog Computing; Dew Computing; Semantic Web; RDF; INTERNET;
D O I
10.1007/s11227-018-2277-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Today's state-of-the-art Big data analytics engines handle masses of data, but will reach to their limits, as the future Big data flood is predicted to still grow with an increasing speed. Hence we need to think about the next development phase and future features of Big data analytics engines. In this paper, we discuss possible future enhancements in the area of Big data analytics with focus on emergent models, frameworks, and hardware technologies. We point out a selection of new challenges and open research questions.
引用
收藏
页码:1800 / 1827
页数:28
相关论文
共 50 条
  • [21] Executing Architectural Models for Big Data Analytics
    Castellanos, Camilo
    Correal, Dario
    Rodriguez, Juliana-Davila
    [J]. SOFTWARE ARCHITECTURE (ECSA 2018), 2018, 11048 : 364 - 371
  • [22] Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics
    Veiga, Jorge
    Exposito, Roberto R.
    Pardo, Xoan C.
    Taboada, Guillermo L.
    Tourino, Juan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 424 - 431
  • [23] Big Data Lakes: Models, Frameworks, and Techniques
    Cuzzocrea, Alfredo
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021), 2021, : 1 - 4
  • [24] Transforming healthcare with big data analytics: technologies, techniques and prospects
    Gomes, Myller Augusto Santos
    Kovaleski, João Luiz
    Pagani, Regina Negri
    da Silva, Vander Luiz
    Pasquini, Tatiana Cabreira de Severo
    [J]. Journal of Medical Engineering and Technology, 2023, 47 (01): : 1 - 11
  • [25] Chimera: A Bridge Between Big Data Analytics and Semantic Technologies
    Belcao, Matteo
    Falzone, Emanuele
    Bionda, Enea
    Della Valle, Emanuele
    [J]. SEMANTIC WEB - ISWC 2021, 2021, 12922 : 463 - 479
  • [26] Big-Data Analytics:Challenges,Key Technologies and Prospects
    Shengmei Luo
    Zhikun Wang
    Zhiping Wang
    [J]. ZTE Communications, 2013, 11 (02) : 11 - 17
  • [27] A Survey of Algorithms, Technologies and Issues in Big Data Analytics and Applications
    Vaidya, Gendlal M.
    Kshirsagar, Manali M.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 347 - 350
  • [28] ORiON: Online ResOurce Negotiator for multiple Big Data Analytics frameworks
    Zacheilas, Nikos
    Chalvantzis, Nikolaos
    Konstantinou, Ioannis
    Kalogeraki, Vana
    Koziris, Nectarios
    [J]. 15TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING (ICAC 2018), 2018, : 11 - 20
  • [29] Spark versus Flink: Understanding Performance in Big Data Analytics Frameworks
    Marcu, Ovidiu-Cristian
    Costan, Alexandra
    Antoniu, Gabriel
    Perez-Hernandez, Maria S.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2016, : 433 - 442
  • [30] Enabling Transparent Acceleration of Big Data Frameworks Using Heterogeneous Hardware
    Xekalaki, Maria
    Fumero, Juan
    Stratikopoulos, Athanasios
    Doka, Katerina
    Katsakioris, Christos
    Bitsakos, Constantinos
    Koziris, Nectarios
    Kotselidis, Christos
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (13): : 3869 - 3882