A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations

被引:6
|
作者
Gala, Sadek [1 ,2 ]
Ragusa, Maria Alessandra [3 ]
机构
[1] ENS Mostaganem, Dept Math, Box 227, Mostaganem 27000, Algeria
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, Catania 95125, Italy
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
来源
关键词
Boussinesq equations; Regularity criterion; Weak solutions; Besov space; NAVIER-STOKES EQUATIONS; BLOW-UP CRITERION; GLOBAL WELL-POSEDNESS; LOCAL EXISTENCE;
D O I
10.1007/s00574-019-00162-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the regularity criteria for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution (u,theta) becomes regular provided that ( backward difference hu, backward difference h theta)is an element of L1(0,T & x37e;B center dot infinity,infinity 0(R3))\,\nabla _{h}\theta )\in L<^>{1}(0,T;\overset{\cdot }{B }_{\infty ,\infty }<^>{0}({\mathbb {R}}<^>{3})) \end{aligned}$$\end{document}Our results improve and extend the well-known result of Dong and Zhang (Nonlinear Anal 11:2415-2421, 2010) for the Navier-Stokes equations.
引用
收藏
页码:513 / 525
页数:13
相关论文
共 50 条