Constrained large-eddy simulation of a spatially evolving supersonic turbulent boundary layer at M=2.25

被引:4
|
作者
Ji, Yongchao [1 ]
Jiang, Zhou [1 ]
Xia, Zhenhua [2 ]
Chen, Shiyi [3 ,4 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, 174 Shazheng St, Chongqing 400044, Peoples R China
[2] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen Key Lab Complex Aerosp Flows, Dept Mech & Aerosp Engn, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China
[4] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
DIRECT NUMERICAL-SIMULATION; SUBGRID-SCALE MODEL; HYBRID LES-RANS; FLOW; INTERFACE; VERSION;
D O I
10.1063/5.0073139
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A spatially developing supersonic flat plate boundary layer flow at M & INFIN; = 2.25 is analyzed using the constrained large-eddy simulation (CLES) method. The Reynolds number based on the momentum thickness of the inlet boundary layer is R e theta = 3429. The mean and statistical quantities, including mean velocity, mean temperature, and total temperature, are obtained and compared among the present approach, large eddy simulation (LES) with the dynamic Smagorinsky model, detached eddy simulation (DES), and naturally developed direct numerical simulation (ND-DNS). As a result, CLES can predict these mean quantities and statistics more accurately than LES and DES, and the results are in good agreement with the ND-DNS data. This demonstrates that CLES is an effective method for spatially developing supersonic flat-plate boundary layer flows.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Large-eddy simulation of a hypersonic turbulent boundary layer over a compression corner
    Qi, Han
    Li, Xinliang
    Ji, Xiangxin
    Tong, Fulin
    Yu, Changping
    [J]. AIP ADVANCES, 2023, 13 (02)
  • [22] LARGE-EDDY SIMULATION OF THE SHEAR-FREE TURBULENT BOUNDARY-LAYER
    BIRINGEN, S
    REYNOLDS, WC
    [J]. JOURNAL OF FLUID MECHANICS, 1981, 103 (FEB) : 53 - 63
  • [23] Large-eddy simulation of wave turbulent boundary layer over rippled bed
    Grigoriadis, Dimokratis G. E.
    Dimas, Athanassios A.
    Balaras, Elias
    [J]. COASTAL ENGINEERING, 2012, 60 : 174 - 189
  • [24] Turbulent Pressure Statistics in the Atmospheric Boundary Layer from Large-Eddy Simulation
    Natasha L. Miles
    John C. Wyngaard
    Martin J. Otte
    [J]. Boundary-Layer Meteorology, 2004, 113 : 161 - 185
  • [25] Large-eddy simulation of turbulent boundary layer flow over multiple hills
    Deng, Ying
    Chong, Kai Leong
    Li, Yan
    Lu, Zhi-ming
    Wang, Bo-fu
    [J]. JOURNAL OF HYDRODYNAMICS, 2023, 35 (04) : 746 - 756
  • [26] A Large-Eddy Simulation of Vortex Cell oeow with Incoming Turbulent Boundary Layer
    Hokpunna, Arpiruk
    Manhart, Michael
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 113 - +
  • [27] Large-Eddy Simulation of the Atmospheric Boundary Layer
    Rob Stoll
    Jeremy A. Gibbs
    Scott T. Salesky
    William Anderson
    Marc Calaf
    [J]. Boundary-Layer Meteorology, 2020, 177 : 541 - 581
  • [28] Large-eddy simulation of turbulent boundary layer separation from a rounded step
    Bentaleb, Yacine
    Lardeau, Sylvain
    Leschziner, Michael A.
    [J]. JOURNAL OF TURBULENCE, 2012, 13 (04): : 1 - 28
  • [29] Turbulent pressure statistics in the atmospheric boundary layer from large-eddy simulation
    Miles, NL
    Wyngaard, JC
    Otte, MJ
    [J]. BOUNDARY-LAYER METEOROLOGY, 2004, 113 (02) : 161 - 185
  • [30] Large-eddy simulation of turbulent boundary layer flow over multiple hills
    Ying Deng
    Kai Leong Chong
    Yan Li
    Zhi-ming Lu
    Bo-fu Wang
    [J]. Journal of Hydrodynamics, 2023, 35 (4) : 746 - 756