Constrained large-eddy simulation of a spatially evolving supersonic turbulent boundary layer at M=2.25

被引:4
|
作者
Ji, Yongchao [1 ]
Jiang, Zhou [1 ]
Xia, Zhenhua [2 ]
Chen, Shiyi [3 ,4 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, 174 Shazheng St, Chongqing 400044, Peoples R China
[2] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen Key Lab Complex Aerosp Flows, Dept Mech & Aerosp Engn, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China
[4] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
DIRECT NUMERICAL-SIMULATION; SUBGRID-SCALE MODEL; HYBRID LES-RANS; FLOW; INTERFACE; VERSION;
D O I
10.1063/5.0073139
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A spatially developing supersonic flat plate boundary layer flow at M & INFIN; = 2.25 is analyzed using the constrained large-eddy simulation (CLES) method. The Reynolds number based on the momentum thickness of the inlet boundary layer is R e theta = 3429. The mean and statistical quantities, including mean velocity, mean temperature, and total temperature, are obtained and compared among the present approach, large eddy simulation (LES) with the dynamic Smagorinsky model, detached eddy simulation (DES), and naturally developed direct numerical simulation (ND-DNS). As a result, CLES can predict these mean quantities and statistics more accurately than LES and DES, and the results are in good agreement with the ND-DNS data. This demonstrates that CLES is an effective method for spatially developing supersonic flat-plate boundary layer flows.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Large-eddy simulation of a spatially-evolving supersonic turbulent boundary layer at M∞=2
    Shadloo, M. S.
    Hadjadj, A.
    Chaudhuri, A.
    Ben-Nasr, O.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2018, 67 : 185 - 197
  • [2] Large-eddy simulation of a spatially evolving supersonic turbulent boundary-layer flow
    Spyropoulos, ET
    Blaisdell, GA
    [J]. AIAA JOURNAL, 1998, 36 (11) : 1983 - 1990
  • [3] Large Eddy Simulation of a Supersonic Turbulent Boundary Layer at M=2.25
    Hadjadj, A.
    Dubos, S.
    [J]. IUTAM SYMPOSIUM ON UNSTEADY SEPARATED FLOWS AND THEIR CONTROL, 2009, 14 : 343 - 348
  • [4] Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25
    Pirozzoli, S
    Grasso, F
    Gatski, TB
    [J]. PHYSICS OF FLUIDS, 2004, 16 (03) : 530 - 545
  • [5] Constrained large-eddy simulation of supersonic turbulent boundary layer over a compression ramp
    Chen, Liang
    Xiao, Zuoli
    Shi, Yipeng
    Chen, Shiyi
    [J]. JOURNAL OF TURBULENCE, 2017, 18 (08): : 781 - 808
  • [6] Large-eddy simulation of a turbulent boundary layer with blowing
    Guillaume Brillant
    Françoise Bataille
    Frédéric Ducros
    [J]. Theoretical and Computational Fluid Dynamics, 2004, 17 : 433 - 443
  • [7] Large-eddy simulation of a turbulent boundary layer with blowing
    Brillant, G
    Bataille, FO
    Ducros, F
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2004, 17 (5-6) : 433 - 443
  • [8] Assessment of subgrid-scale modeling for large-eddy simulation of a spatially-evolving compressible turbulent boundary layer
    Ben-Nasr, O.
    Hadjadj, A.
    Chaudhuri, A.
    Shadloo, M. S.
    [J]. COMPUTERS & FLUIDS, 2017, 151 : 144 - 158
  • [9] Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp
    Grilli, Muzio
    Hickel, Stefan
    Adams, Nikolaus A.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2013, 42 : 79 - 93
  • [10] Large-eddy simulation of aero-optical effects in a spatially developing turbulent boundary layer
    Tromeur, E
    Garnier, E
    Sagaut, P
    [J]. JOURNAL OF TURBULENCE, 2006, 7 (01): : 1 - 28