Remarks on multi-output Gaussian process regression

被引:177
|
作者
Liu, Haitao [1 ]
Cai, Jianfei [2 ]
Ong, Yew-Soon [2 ,3 ]
机构
[1] Nanyang Technol Univ, Rolls Royce NTU Corp Lab, Singapore 637460, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Data Sci & Artificial Intelligence Res Ctr, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Multi-output Gaussian process; Symmetric/asymmetric MOGP; Multi-fidelity; Output correlation; Knowledge transfer; COMPUTER CODE; DESIGN; OPTIMIZATION; SIMULATION; MODEL; APPROXIMATION; EFFICIENT; SUPPORT; OUTPUT;
D O I
10.1016/j.knosys.2017.12.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs into two main categories as (1) symmetric MOGP5 that improve the predictions for all the outputs, and (2) asymmetric MOGPs, particularly the multi-fidelity MOGPs, that focus on the improvement of high fidelity output via the useful information transferred from related low fidelity outputs. We review existing symmetric/asymmetric MOGPs and analyze their characteristics, e.g., the covariance functions (separable or non-separable), the modeling process (integrated or decomposed), the information transfer (bidirectional or unidirectional), and the hyperparameter inference (joint or separate). Besides, we assess the performance of ten representative MOGPs thoroughly on eight examples in symmetric/asymmetric scenarios by considering, e.g., different training data (heterotopic or isotopic), different training sizes (small, moderate and large), different output correlations (low or high), and different output sizes (up to four outputs). Based on the qualitative and quantitative analysis, we give some recommendations regarding the usage of MOGPs and highlight potential research directions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 50 条
  • [1] Generalized multi-output Gaussian process censored regression
    Gammelli, Daniele
    Rolsted, Kasper Pryds
    Pacino, Dario
    Rodrigues, Filipe
    [J]. PATTERN RECOGNITION, 2022, 129
  • [2] Online Sparse Multi-Output Gaussian Process Regression and Learning
    Yang, Le
    Wang, Ke
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (02): : 258 - 272
  • [3] Constrained Multi-Output Gaussian Process Regression for Data Reconciliation
    Horak, W.
    Louw, T. M.
    Bradshaw, S. M.
    [J]. IFAC PAPERSONLINE, 2024, 58 (04): : 324 - 329
  • [4] Approximate Inference in Related Multi-output Gaussian Process Regression
    Chiplunkar, Ankit
    Rachelson, Emmanuel
    Colombo, Michele
    Morlier, Joseph
    [J]. PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016, 2017, 10163 : 88 - 103
  • [5] Respiratory motion prediction using multi-output Gaussian process regression
    Omotayo, Azeez
    McCurdy, Boyd
    Venkataraman, Sankar
    [J]. MEDICAL PHYSICS, 2017, 44 (08) : 4385 - 4385
  • [6] Fast Airfoil Design Based on Multi-output Gaussian Process Regression
    Yan Guoqi
    Liu Xuejun
    Lu Hongqiang
    [J]. DISCOVERY, INNOVATION AND COMMUNICATION - 5TH CSAA SCIENCE AND TECHNIQUE YOUTH FORUM, 2012, : 147 - 152
  • [7] Multi-output local Gaussian process regression: Applications to uncertainty quantification
    Bilionis, Ilias
    Zabaras, Nicholas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) : 5718 - 5746
  • [8] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3005 - 3028
  • [9] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Zexun Chen
    Bo Wang
    Alexander N. Gorban
    [J]. Neural Computing and Applications, 2020, 32 : 3005 - 3028
  • [10] MOGPTK: The multi-output Gaussian process toolkit
    de Wolff, Taco
    Cuevas, Alejandro
    Tobar, Felipe
    [J]. NEUROCOMPUTING, 2021, 424 : 49 - 53