Multi-output local Gaussian process regression: Applications to uncertainty quantification

被引:113
|
作者
Bilionis, Ilias
Zabaras, Nicholas [1 ]
机构
[1] Cornell Univ, Mat Proc Design & Control Lab, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Gaussian process; Bayesian; Uncertainty quantification; Stochastic partial differential equations; Multi-output; Multi-element; Adaptivity; GENERALIZED POLYNOMIAL CHAOS; DIFFERENTIAL-EQUATIONS; COLLOCATION METHOD; DESIGN;
D O I
10.1016/j.jcp.2012.04.047
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop an efficient, Bayesian Uncertainty Quantification framework using a novel treed Gaussian process model. The tree is adaptively constructed using information conveyed by the observed data about the length scales of the underlying process. On each leaf of the tree, we utilize Bayesian Experimental Design techniques in order to learn a multi-output Gaussian process. The constructed surrogate can provide analytical point estimates, as well as error bars, for the statistics of interest. We numerically demonstrate the effectiveness of the suggested framework in identifying discontinuities, local features and unimportant dimensions in the solution of stochastic differential equations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5718 / 5746
页数:29
相关论文
共 50 条
  • [1] Remarks on multi-output Gaussian process regression
    Liu, Haitao
    Cai, Jianfei
    Ong, Yew-Soon
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 144 : 102 - 121
  • [2] Generalized multi-output Gaussian process censored regression
    Gammelli, Daniele
    Rolsted, Kasper Pryds
    Pacino, Dario
    Rodrigues, Filipe
    [J]. PATTERN RECOGNITION, 2022, 129
  • [3] Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification
    Bilionis, Ilias
    Zabaras, Nicholas
    Konomi, Bledar A.
    Lin, Guang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 241 : 212 - 239
  • [4] Online Sparse Multi-Output Gaussian Process Regression and Learning
    Yang, Le
    Wang, Ke
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (02): : 258 - 272
  • [5] Constrained Multi-Output Gaussian Process Regression for Data Reconciliation
    Horak, W.
    Louw, T. M.
    Bradshaw, S. M.
    [J]. IFAC PAPERSONLINE, 2024, 58 (04): : 324 - 329
  • [6] Approximate Inference in Related Multi-output Gaussian Process Regression
    Chiplunkar, Ankit
    Rachelson, Emmanuel
    Colombo, Michele
    Morlier, Joseph
    [J]. PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016, 2017, 10163 : 88 - 103
  • [7] Multi-Output Gaussian Processes for Inverse Uncertainty Quantification in Neutron Noise Analysis
    Lartaud, Paul
    Humbert, Philippe
    Garnier, Josselin
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (08) : 1928 - 1951
  • [8] Respiratory motion prediction using multi-output Gaussian process regression
    Omotayo, Azeez
    McCurdy, Boyd
    Venkataraman, Sankar
    [J]. MEDICAL PHYSICS, 2017, 44 (08) : 4385 - 4385
  • [9] Fast Airfoil Design Based on Multi-output Gaussian Process Regression
    Yan Guoqi
    Liu Xuejun
    Lu Hongqiang
    [J]. DISCOVERY, INNOVATION AND COMMUNICATION - 5TH CSAA SCIENCE AND TECHNIQUE YOUTH FORUM, 2012, : 147 - 152
  • [10] Multivariate Gaussian and Student-t process regression for multi-output prediction
    Chen, Zexun
    Wang, Bo
    Gorban, Alexander N.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3005 - 3028