Intelligence Testing for Autonomous Vehicles: A New Approach

被引:168
|
作者
Li, Li [1 ,2 ]
Huang, Wu-Ling [3 ]
Liu, Yuehu [4 ]
Zheng, Nan-Ning [4 ]
Wang, Fei-Yue [3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Nanjing 210096, Peoples R China
[3] Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100080, Peoples R China
[4] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Autonomous vehicles; intelligence testing;
D O I
10.1109/TIV.2016.2608003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study how to test the intelligence of an autonomous vehicle. Comprehensive testing is crucial to both vehicle manufactories and customers. Existing testing approaches can be categorized into two kinds: scenario-based testing and functionality-based testing. We first discuss the shortcomings of these two kinds of approaches, and then propose a new testing framework to combine the benefits of them. Based on the new semantic diagram definition for the intelligence of autonomous vehicles, we explain how to design a task for autonomous vehicle testing and how to evaluate test results. Experiments show that this new approach provides a quantitative way to test the intelligence of an autonomous vehicle.
引用
收藏
页码:158 / 166
页数:9
相关论文
共 50 条
  • [1] An integral approach to autonomous and cooperative vehicles development and testing
    Passchier, Igor
    van Vugt, Gwen
    Tideman, Martijn
    [J]. 2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, : 348 - 352
  • [2] Comfort Intelligence for Autonomous Vehicles
    Sawabe, Taishi
    Kanbara, Masayuki
    Hagita, Norihiro
    [J]. ADJUNCT PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2018, : 350 - 353
  • [3] On the Mobile Intelligence of Autonomous Vehicles
    Azevedo, Jose
    d'Ore, Pedro M.
    Ferreira, Michel
    [J]. NOMS 2016 - 2016 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, 2016, : 1169 - 1174
  • [4] Intelligence of Autonomous Vehicles: A Concise Revisit
    Naz, Neelma
    Ehsan, Muhammad Khurram
    Amirzada, Muhammad Rizwan
    Ali, Md Yeakub
    Qureshi, Muhammad Aasim
    [J]. JOURNAL OF SENSORS, 2022, 2022
  • [5] Survey on Intelligence Evaluation of Autonomous Vehicles
    Chen, Junyi
    Li, Rubing
    Xing, Xingyu
    Meng, Haolan
    Yu, Zhuoping
    [J]. Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (12): : 1785 - 1790
  • [6] Manchurian artificial intelligence in autonomous vehicles
    Kiss, Gabor
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (05) : 5841 - 5845
  • [7] As autonomous vehicles approach
    McPherson, Allen
    Dzepina, Branislav
    Quinn, Aidan
    Turcotte, Joshua Eric
    [J]. SCIENCE, 2018, 359 (6377) : 755 - 755
  • [8] The mobile revolution - Machine intelligence for autonomous vehicles
    Enzweiler, Markus
    [J]. IT-INFORMATION TECHNOLOGY, 2015, 57 (03): : 199 - 202
  • [9] Autonomous driving of vehicles based on artificial intelligence
    Gao, Xianping
    Bian, Xueliang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (04) : 4955 - 4964
  • [10] Networked Edge Intelligence for Autonomous Farm Vehicles
    Li, Dongbo
    Jiang, Qianpeng
    Li, Shulang
    Liu, Xuanyu
    Liu, Jie
    [J]. IEEE NETWORK, 2023, 37 (04): : 297 - 304