Detection of leucine aminopeptidase activity in serum using surface-enhanced Raman spectroscopy

被引:9
|
作者
Guo, Dan [1 ,2 ]
Gan, Zhen-Fei [1 ,2 ]
Jiang, Lei [1 ,2 ]
Cao, Mao-Feng [1 ,2 ]
Patrice, Fato Tano [1 ,2 ]
Hafez, Mahmoud Elsayed [1 ,2 ,3 ]
Li, Da-Wei [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Joint Int Lab Precis Chem, Key Lab Adv Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Beni Suef Univ, Dept Chem, Salah Salem St, Bani Suwayf 62511, Egypt
基金
中国国家自然科学基金;
关键词
ACTIVITY IN-VITRO; LIVING CELLS; FLUORESCENT-PROBE; SILVER; NANOPARTICLES; SCATTERING; TRACKING; VIVO; NANOPROBES; PROTEASE;
D O I
10.1039/c8an02182a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Leucine aminopeptidase (LAP), an important proteolytic enzyme, is closely associated with diverse physiological and pathological disorders such as liver injury and cancers. Hence, it is imperative to develop an effective method to detect LAP activity for early diagnosis of diseases. In this work, we report a novel SERS probe bis-s-s-[(s)-2-amino-N-(3-thiophenyl)-Leu]. (b-(s)-ANT-Leu) with an l-leucine amide group, which can specially respond to LAP, to assay the LAP activity according to the SERS spectral changes between the probe molecule and its corresponding hydrolysis product resulting from the catalysis of LAP. This SERS approach features high selectivity on account of the specificity of the reaction combined with the instinctive fingerprinting ability of SERS and shows a good linear relationship in a wide range from 0.2 to 100 mU mL(-1) with a detection limit as low as 0.16 mU mL(-1). In addition, the SERS-based strategy can be competent for LAP activity detection in clinical patient serum samples and LAP inhibitor evaluation, demonstrating its great potential in the pathological analysis for diseases involving LAP and the screening of LAP inhibitors.
引用
下载
收藏
页码:1394 / 1400
页数:7
相关论文
共 50 条
  • [1] Quantitative butyrylcholinesterase activity detection by surface-enhanced Raman spectroscopy
    Nechaeva, Natalia
    Prokopkina, Taisiya
    Makhaeva, Galina
    Rudakova, Elena
    Boltneva, Natalia
    Dishovsky, Christophor
    Eremenko, Arkadiy
    Kurochkin, Ilya
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 259 : 75 - 82
  • [2] Clinical detection of total homocysteine in human serum using surface-enhanced Raman spectroscopy
    Zheng, Xiao-Bing
    Liu, Sheng-Hong
    Panneerselvam, Rajapandiyan
    Zhang, Yue-Jiao
    Wang, An
    Zhang, Fan-Li
    Jin, Shangzhong
    Li, Jian-Feng
    VIBRATIONAL SPECTROSCOPY, 2023, 126
  • [3] Advances in landmine detection using surface-enhanced Raman spectroscopy
    Spencer, KM
    Sylvia, JM
    Janni, JA
    Klein, JD
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS IV, PTS 1 AND 2, 1999, 3710 : 373 - 379
  • [4] Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy
    Ruan, Chuanmin
    Wang, Wei
    Gu, Baohua
    ANALYTICAL CHEMISTRY, 2006, 78 (10) : 3379 - 3384
  • [5] Direct Bilirubin Detection Using Surface-Enhanced Raman Spectroscopy
    Li, Cheng-Yi
    Hsu, Sandy Huey-Jen
    Chang, Cheng-Chung
    Wang, Gou-Jen
    IEEE SENSORS JOURNAL, 2021, 21 (19) : 21458 - 21464
  • [6] Detection of explosive vapour using surface-enhanced Raman spectroscopy
    X. Fang
    S. R. Ahmad
    Applied Physics B, 2009, 97 : 723 - 726
  • [7] Detection of explosive vapour using surface-enhanced Raman spectroscopy
    Fang, X.
    Ahmad, S. R.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (03): : 723 - 726
  • [8] Detection of bacteria by surface-enhanced Raman spectroscopy
    Atanu Sengupta
    Mirna Mujacic
    E. James Davis
    Analytical and Bioanalytical Chemistry, 2006, 386 : 1379 - 1386
  • [9] Surface-enhanced Raman spectroscopy for the detection of microplastics
    Mikac, L.
    Rigo, I.
    Himics, L.
    Tolic, A.
    Ivanda, M.
    Veres, M.
    APPLIED SURFACE SCIENCE, 2023, 608
  • [10] Detection of bacteria by surface-enhanced Raman spectroscopy
    Sengupta, Atanu
    Mujacic, Mirna
    Davis, E. James
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2006, 386 (05) : 1379 - 1386