The free group on n generators modulo n plus u random relations as n goes to infinity

被引:2
|
作者
Liu, Yuan [1 ]
Wood, Melanie Matchett [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53705 USA
[2] Amer Inst Math, 600 East Brokaw Rd, San Jose, CA 95112 USA
基金
美国国家科学基金会;
关键词
COHEN-LENSTRA HEURISTICS; CONJECTURE; PROFINITE;
D O I
10.1515/crelle-2018-0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, as n goes to infinity, the free group on n generators, modulo n + u random relations, converges to a random group that we give explicitly. This random group is a non-abelian version of the random abelian groups that feature in the Cohen-Lenstra heuristics. For each n, these random groups belong to the few relator model in the Gromov model of random groups.
引用
收藏
页码:123 / 166
页数:44
相关论文
共 50 条
  • [21] Interassociates of the Free Commutative Semigroup on n Generators
    Berit Nilsen Givens
    Karen Linton
    Amber Rosin
    Laurie Dishman
    Semigroup Forum, 2007, 74 : 370 - 378
  • [22] Interassociates of the free commutative semigroup on n generators
    Givens, Berit Nilsen
    Linton, Karen
    Rosin, Amber
    Dishman, Laurie
    SEMIGROUP FORUM, 2007, 74 (03) : 370 - 378
  • [23] Generators and relations for the semigroups of increasing functions on N and Z
    Doroshenko, Vadym
    ALGEBRA & DISCRETE MATHEMATICS, 2005, (04): : 1 - 15
  • [24] GENERATORS AND RELATIONS FOR n-QUBIT CLIFFORD OPERATORS
    Selinger, Peter
    LOGICAL METHODS IN COMPUTER SCIENCE, 2015, 11 (02)
  • [25] Central limit theorem for isotropic random walks on n-spheres for n -&gt infinity
    Journal of Mathematical Analysis and Applications, 1995, 189 (01):
  • [26] Two stochastic models of a random walk in the U(n)-spherical duals of U(n + 1)
    F. A. Grünbaum
    I. Pacharoni
    J. Tirao
    Annali di Matematica Pura ed Applicata, 2013, 192 : 447 - 473
  • [27] Group of p-th roots of unity modulo n
    Omami, Rochdi
    Omami, Mohamed
    Ouni, Raouf
    World Academy of Science, Engineering and Technology, 2010, 43 : 404 - 415
  • [29] Group of p-th roots of unity modulo n
    Omami, Rochdi
    Omami, Mohamed
    Ouni, Raouf
    International Journal of Computational and Mathematical Sciences, 2010, 4 (03): : 123 - 134
  • [30] MODULO (2n plus 1) ARITHMETIC LOGIC.
    Agrawal, Dharma P.
    Rao, Thammavaram R.N.
    1978, 2 (06): : 186 - 188