Symplectic automorphisms of prime order on K3 surfaces

被引:36
|
作者
Garbagnati, Alice [2 ]
Sarti, Alessandra [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
K3; surfaces; automorphisms; moduli;
D O I
10.1016/j.jalgebra.2007.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study algebraic K3 surfaces (defined over the complex number field) with a symplectic automorphism of prime order. In particular we consider the action of the automorphism on the second cohomology with integer coefficients (by a result of Nikulin this action is independent on the choice of the K3 surface). With the help of elliptic fibrations we determine the invariant sublattice and its perpendicular complement, and show that the latter coincides with the Coxeter-Todd lattice in the case of automorphism of order three. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 350
页数:28
相关论文
共 50 条