Forster resonance energy transfer on single molecules: biological applications

被引:0
|
作者
Margeat, Emmanuel [1 ,2 ,3 ]
机构
[1] CNRS, UMR 5048, Ctr Biochim Struct, F-34090 Montpellier, France
[2] Univ Montpellier I, INSERM, U554, F-34090 Montpellier, France
[3] Univ Montpellier 2, INSERM, U554, F-34090 Montpellier, France
来源
ACTUALITE CHIMIQUE | 2010年 / 347期
关键词
Fluorescence; single molecules; protein; DNA; FRET; ALTERNATING-LASER EXCITATION; INITIATION; PROTEINS; FRET;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Forster resonance energy transfer on single molecules: biological applications Single molecule observations allow the biologists to obtain mechanistic informations on biological molecules, otherwise inaccessible by classical methods, which rely on the observation of a heterogeneous ensemble of dynamic and unsynchronized molecules. Forster resonance energy transfer (FRET) on single molecules allows the measurement of the distance and distance changes between two fluorophores, in real time. This technique has allowed in the past ten years a better understanding of the mecanochemistry of some molecular motors, such as those implicated for example in DNA replication, translocation or transcription, or protein synthesis (translation). This paper covers the theory and practical aspects of single molecule FRET, and reviews some biological applications.
引用
收藏
页码:30 / 40
页数:11
相关论文
共 50 条
  • [41] Forster resonance energy transfer and kinesin motor proteins
    Prevo, Bram
    Peterman, Erwin J. G.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (04) : 1144 - 1155
  • [42] Analyzing Forster Resonance Energy Transfer with Fluctuation Algorithms
    Felekyan, Suren
    Sanabria, Hugo
    Kalinin, Stanislav
    Kuehnemuth, Ralf
    Seidel, Claus A. M.
    FLUORESCENCE FLUCTUATION SPECTROSCOPY (FFS), PT B, 2013, 519 : 39 - 85
  • [43] Forster Resonance Energy Transfer inside Hyperbolic Metamaterials
    Roth, Diane J.
    Nasir, Mazhar E.
    Ginzburg, Pavel
    Wang, Pan
    Le Marois, Alix
    Suhling, Klaus
    Richards, David
    Zayats, Anatoly V.
    ACS PHOTONICS, 2018, 5 (11): : 4594 - 4603
  • [44] Quantum dots for Forster Resonance Energy Transfer FRET
    Dos Santos, Marcelina Cardoso
    Algar, W. Russ
    Medintz, Igor L.
    Hildebrandt, Niko
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 125
  • [45] Ultramarine, a Chromoprotein Acceptor for Forster Resonance Energy Transfer
    Pettikiriarachchi, Anne
    Gong, Lan
    Perugini, Matthew A.
    Devenish, Rodney J.
    Prescott, Mark
    PLOS ONE, 2012, 7 (07):
  • [46] Visualizing ribosomal movements with Forster resonance energy transfer
    Majumdar, ZK
    Clegg, RM
    Noller, HF
    Hickerson, R
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 317A - 317A
  • [47] Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency
    Blum, Christian
    Zijlstra, Niels
    Lagendijk, Ad
    Wubs, Martijn
    Mosk, Allard P.
    Subramaniam, Vinod
    Vos, Willem L.
    PHYSICAL REVIEW LETTERS, 2012, 109 (20)
  • [48] Plasmon-Controlled Forster Resonance Energy Transfer
    Zhao, Lei
    Ming, Tian
    Shao, Lei
    Chen, Huanjun
    Wang, Jianfang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 8287 - 8296
  • [49] Forster Resonance Energy Transfer in an Intrinsically Disordered Peptide
    Martinez, Roman J.
    Martin, Joshua P.
    FASEB JOURNAL, 2022, 36
  • [50] Forster Resonance Energy Transfer in Luminescent Solar Concentrators
    Zhang, Bolong
    Lyu, Guanpeng
    Kelly, Elaine A.
    Evans, Rachel C.
    ADVANCED SCIENCE, 2022, 9 (23)