Identification and control of an experimental Adaptive Optics setup

被引:2
|
作者
Soto-Munoz, Nicolas [1 ,2 ]
Langedijk, Constantijn [3 ]
Escarate, Pedro [5 ,6 ]
Carvajal, Rodrigo [2 ,4 ]
Aguero, Juan C. [2 ,4 ]
机构
[1] Univ Tecn Federico Santa Maria, Nucleo Milenio Formac Planetaria, Valparaiso, Chile
[2] Univ Tecn Federico Santa Maria, Elect Engn Dept, Valparaiso, Chile
[3] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[4] Univ Tecn Federico Santa Maria, Adv Ctr Elect & Elect Engn, Valparaiso, Chile
[5] Univ Austral Chile, Nucleo Milenio Formac Planetaria, Fac Ciencias Ingn, Valdivia, Chile
[6] Univ Austral Chile, Inst Elect & Elect, Fac Ciencias Ingn, Valdivia, Chile
关键词
Adaptive Optics; System Identification; Control; DISTURBANCE MODEL IDENTIFICATION; MITIGATION;
D O I
10.1109/chilecon47746.2019.8987598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive optics have become the standard technique to compensate disturbances for ground based astronomy. Due to the demanding features of next generation telescopes, improved identification and control methods are required. In this paper we present the identification and control of an experimental adaptive optics system. The identification of the system's Tip and Tilt dynamics is performed using the Prediction Error Method. A spectral factorisation approach is used to identify the continuous time disturbance model for mechanical vibrations. Using the identified models, a pole placement method is used to design a controller that compensates for the disturbances. The performance of the designed controller was evaluated and compared with a traditional PI controller, showing an almost tenfold improvement on output variance with the proposed design.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Test setup for static and dynamic measurements of an adaptive optics integrated circuit with pixel arrays
    Bashyam, A
    Giles, MK
    Furth, PM
    OPTOELECTRONIC INTEGRATED CIRCUITS VI, 2004, 5356 : 154 - 164
  • [42] Easy and versatile adaptive optics setup with deformable lens for high-resolution microscopy
    Pozzi, P.
    Quintavalla, M.
    Verstraete, H.
    Bijlsma, H.
    Bonora, S.
    Verhaegen, M.
    OPTICAL METHODS FOR INSPECTION, CHARACTERIZATION, AND IMAGING OF BIOMATERIALS III, 2017, 10333
  • [43] Nonlinear control for pyramid sensors in adaptive optics
    Wulff, Ole
    Looze, Douglas
    ADVANCES IN ADAPTIVE OPTICS II, PRS 1-3, 2006, 6272 : U581 - U589
  • [44] MODAL CONTROL FOR WAVEFRONT RECONSTRUCTION IN ADAPTIVE OPTICS
    BILLE, J
    JAHN, G
    FRIEBEN, M
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1982, 332 : 269 - 275
  • [45] Kalman filter based control for adaptive optics
    Petit, C
    Quiros-Pacheco, F
    Conan, JM
    Kulcsár, C
    Raynaud, HF
    Fusco, T
    Rousset, G
    ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 1414 - 1425
  • [46] Fast adaptive control technology for wireless optics
    Cai, R
    Xue, C
    Fu, J
    Hu, Y
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 446 - 449
  • [47] ACTIVE CONTROL AND ADAPTIVE OPTICS FOR OPTICAL INTERFEROMETERS
    MERKLE, F
    HIGHLIGHTS OF ASTRONOMY, VOL 8, 1989, : 565 - 566
  • [48] Classical adaptive optics: disturbance rejection control
    Folcher, Jean-Pierre
    Abelli, Andrea
    Ferrari, Andre
    Carbillet, Marcel
    ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [49] Optimal control law for multiconjugate adaptive optics
    Le Roux, B
    Conan, JM
    Kulcsar, C
    Raynaud, HF
    Mugnier, LM
    Fusco, T
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES II, PTS 1 AND 2, 2003, 4839 : 878 - 889
  • [50] Optimal control, observers and integrators in adaptive optics
    Kulcar, Caroline
    Raynaud, Henri-Francois
    Petit, Cyril
    Conan, Jean-Marc
    de Lesegno, Patrick Viaris
    OPTICS EXPRESS, 2006, 14 (17): : 7464 - 7476