Analysis of a strongly coupled system of two convection-diffusion equations with full layer interaction

被引:6
|
作者
Roos, Hans-G. [1 ]
Reibiger, Christian [1 ]
机构
[1] Tech Univ Dresden, Dept Math, Inst Numer Math, D-01062 Dresden, Germany
关键词
Convection-diffusion; linear finite elements; a priori analysis; layer-adapted meshes; singular perturbed;
D O I
10.1002/zamm.201000153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strong coupling of convection-diffusion equations causes interactions between boundary layers that are not fully understood so far. Under certain assumptions, a new approach presented explains what happens. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
下载
收藏
页码:537 / 543
页数:7
相关论文
共 50 条
  • [21] Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows
    M. Hamid
    M. Usman
    Zhenfu Tian
    Applied Mathematics and Mechanics, 2023, 44 : 669 - 692
  • [22] Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows
    Hamid, M.
    Usman, M.
    Tian, Zhenfu
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2023, 44 (04) : 669 - 692
  • [23] Convergence analysis of a multigrid method for convection-diffusion equations
    Reusken, A
    NUMERISCHE MATHEMATIK, 2002, 91 (02) : 323 - 349
  • [24] A study of isogeometric analysis for scalar convection-diffusion equations
    John, Volker
    Schumacher, Liesel
    APPLIED MATHEMATICS LETTERS, 2014, 27 : 43 - 48
  • [25] LAYER STRUCTURE AND THE GALERKIN FINITE ELEMENT METHOD FOR A SYSTEM OF WEAKLY COUPLED SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH MULTIPLE SCALES
    Roos, Hans-Goerg
    Schopf, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1525 - 1547
  • [26] Computational uncertainty quantification for some strongly degenerate parabolic convection-diffusion equations
    Burger, Raimund
    Kroeker, Ilja
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 (490-508) : 490 - 508
  • [27] Fujita type theorem for a class of coupled quasilinear convection-diffusion equations
    Zhou, Yanan
    Leng, Yan
    Nie, Yuanyuan
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [28] A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations
    Bellew, S
    O'Riordan, E
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 171 - 186
  • [29] Lattice kinetic scheme for the Navier-Stokes equations coupled with convection-diffusion equations
    Wang, Liang
    Zhao, Weifeng
    Wang, Xiao-Dong
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [30] Analysis of Two-Grid Characteristic Finite Element Methods for Convection-Diffusion Equations
    Wang, Keyan
    Hu, Boxia
    JOURNAL OF MATHEMATICS, 2023, 2023