Macroscopic quantum tunneling escape of Bose-Einstein condensates

被引:17
|
作者
Zhao, Xinxin [1 ,2 ]
Alcala, Diego A. [2 ]
McLain, Marie A. [2 ]
Maeda, Kenji [2 ]
Potnis, Shreyas [3 ,4 ,5 ]
Ramos, Ramon [3 ,4 ,5 ]
Steinberg, Aephraim M. [3 ,4 ,5 ,6 ]
Carr, Lincoln D. [2 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[3] Univ Toronto, Ctr Quantum Informat & Quantum Control, 60 St George St, Toronto, ON M5S 1A7, Canada
[4] Univ Toronto, Inst Opt Sci, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
[5] Univ Toronto, Inst Opt, 60 St George St, Toronto, ON M5S 1A7, Canada
[6] Canadian Inst Adv Res, 180 Dundas St West, Toronto, ON M5G 1Z8, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 加拿大创新基金会;
关键词
INCOHERENT SPATIAL SOLITONS; COHERENT; OSCILLATIONS; DYNAMICS; SYSTEMS; MODEL; ENTANGLEMENT; TRANSITION; STATES; BEAMS;
D O I
10.1103/PhysRevA.96.063601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent experiments on macroscopic quantum tunneling reveal a nonexponential decay of the number of atoms trapped in a quasibound state behind a potential barrier. Through both experiment and theory, we demonstrate this nonexponential decay results from interactions between atoms. Quantum tunneling of tens of thousands of Rb-87 atoms in a Bose-Einstein condensate is modeled by a modified Jeffreys-Wentzel-Kramers-Brillouin model, taking into account the effective time-dependent barrier induced by the mean field. Three-dimensional Gross-Pitaevskii simulations corroborate a mean-field result when compared with experiments. However, with one-dimensional modeling using time-evolving block decimation, we present an effective renormalized mean-field theory that suggests many-body dynamics for which a bare mean-field theory may not apply.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Macroscopic Excitations in Confined Bose-Einstein Condensates, Searching for Quantum Turbulence
    Zamora-Zamora, R.
    Adame-Arana, O.
    Romero-Rochin, V.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2015, 180 (1-2) : 109 - 125
  • [32] Macroscopic quantum tunnelling of Bose-Einstein condensates in a finite potential well
    Carr, LD
    Holland, MJ
    Malomed, BA
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (17) : 3217 - 3231
  • [33] Tunneling electroconductance of atomic Bose-Einstein condensates
    Akulin, V. M.
    Lozovik, Yu. E.
    Mazets, I. E.
    Rudavets, A. G.
    Sarfati, A.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [34] Tunneling Problems between Bose-Einstein Condensates
    Watabe, Shohei
    Kato, Yusuke
    [J]. 25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 3: QUANTUM GASES LIQUIDS AND SOLIDS, 2009, 150
  • [35] Quantum tunneling of Bose-Einstein condensates in optical lattices under gravity
    Liu, WM
    Fan, WB
    Zheng, WM
    Liang, JQ
    Chui, ST
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 1704081 - 1704084
  • [36] Quantum effects of Bose-Einstein condensates
    Yu, ZX
    Jiao, ZY
    Sun, JZ
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (04) : 593 - 598
  • [37] Macroscopic quantum escape of Bose-Einstein condensates: Analysis of experimentally realizable quasi-one-dimensional traps
    Alcala, Diego A.
    Urban, Gregor
    Weidemueller, Matthias
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [38] Quantum metrology with Bose-Einstein condensates
    Boixo, Sergio
    Datta, Animesh
    Davis, Matthew J.
    Flammia, Steven T.
    Shaji, Anil
    Tacla, Alexandre B.
    Caves, Carlton M.
    [J]. QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 423 - +
  • [39] (Quantum) chaos in Bose-Einstein condensates
    Gardiner, SA
    [J]. JOURNAL OF MODERN OPTICS, 2002, 49 (12) : 1971 - 1977
  • [40] Quantum Effects of Bose-Einstein Condensates
    YU Zhao-Xian~(1
    [J]. Communications in Theoretical Physics, 2004, 41 (04) : 593 - 598