Annihilating fields of standard modules for affine Lie algebras

被引:0
|
作者
Borcea, J [1 ]
机构
[1] Univ Strasbourg 1, Inst Rech Math Avancee, F-67084 Strasbourg, France
关键词
D O I
10.1007/PL00004870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an affine Kac-Moody Lie algebra (g) over tilde[sigma] of arbitrary type, we determine certain minimal sets of annihilating fields of standard (g) over tilde[sigma]-modules. We then use these sets in order to obtain a characterization of standard (g) over tilde[sigma]-modules in terms of irreducible loop (g) over tilde[sigma]-modules, which proves to be a useful tool for combinatorial constructions of bases for standard (g) over tilde[sigma]-modules.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 50 条
  • [31] A resolution for standard modules of Borcherds Lie algebras
    Jurisich, E
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 192 (1-3) : 149 - 158
  • [32] Trigonometric Lie algebras, affine Kac-Moody Lie algebras, and equivariant quasi modules for vertex algebras
    Guo, Hongyan
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2023, 636 : 42 - 74
  • [33] Simple modules for twisted Hamiltonian extended affine Lie algebras
    Tantubay, Santanu
    Chakraborty, Priyanshu
    Batra, Punita
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 696 : 29 - 45
  • [34] Dimensions of Demazure modules for rank two affine Lie algebras
    Sanderson, YB
    COMPOSITIO MATHEMATICA, 1996, 101 (02) : 115 - 131
  • [35] Verma-type modules for quantum affine Lie algebras
    Futorny, VM
    Grishkov, AN
    Melville, DJ
    ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (01) : 99 - 125
  • [36] Braided Tensor Categories of Admissible Modules for Affine Lie Algebras
    Thomas Creutzig
    Yi-Zhi Huang
    Jinwei Yang
    Communications in Mathematical Physics, 2018, 362 : 827 - 854
  • [38] FREE FIELD REALIZATIONS OF INDUCED MODULES FOR AFFINE LIE ALGEBRAS
    Kashuba, Iryna
    Martins, Renato A.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2428 - 2441
  • [39] ON WEYL MODULES OVER AFFINE LIE ALGEBRAS IN PRIME CHARACTERISTIC
    Lai, C.
    TRANSFORMATION GROUPS, 2016, 21 (04) : 1123 - 1153
  • [40] Verma-Type Modules for Quantum Affine Lie Algebras
    Vyacheslav M. Futorny
    Alexander N. Grishkov
    Duncan J. Melville
    Algebras and Representation Theory, 2005, 8 : 99 - 125