On Chebyshev's Polynomials and Certain Combinatorial Identities

被引:0
|
作者
Lee, Chan-Lye [1 ]
Wong, K. B. [1 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
Chebyshev's polynomials; irreducibility; greatest common divisor; combinatorial identities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T(n)(x) and U(n)(x) be the Chebyshev's polynomial of the first kind and second kind of degree n, respectively. For n >= 1, U(2n-1)(x) = 2Tn(x)U(n-1)(x) and U(2n) (x) = (-1)(n)A(n) (x)A(n)(x), where A(n) (x) = 2(n) Pi(n)(i=1) (x- cos i theta), theta = 2 pi/(2n + 1). In this paper, we will study the polynomial A(n)(x). Let A(n)(x) = Sigma(n)(m-0) a(n,m)x(m). We prove that a(n.m) = (-1)(k)2(m)((l)(k)), where k = left perpendicular n-m/2 right perpendicular and l = left perpendicular n+m/2 right perpendicular. We also completely factorize A(n)(x) into irreducible factors over Z and obtain a condition for determining when A(r)(x) is divisible by A(s)(x). Furthermore we determine the greatest common divisor of A(r)(x) and A(s)(x) and also greatest common divisor of A(r)(x) and the Chebyshev's polynomials. Finally we prove certain combinatorial identities that arise from the polynomial A(n)(x).
引用
收藏
页码:279 / 286
页数:8
相关论文
共 50 条