Contextual Attention Refinement Network for Real-Time Semantic Segmentation

被引:16
|
作者
Hao, Shijie [1 ,2 ]
Zhou, Yuan [1 ,2 ]
Zhang, Youming [3 ]
Guo, Yanrong [1 ,2 ]
机构
[1] Hefei Univ Technol, Minist Educ, Key Lab Knowledge Engn Big Data, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
[3] Northeastern Univ, Sch Math & Stat, Qinhuangdao 066004, Hebei, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Real-time semantic segmentation; contextual attention refinement module; semantic context loss;
D O I
10.1109/ACCESS.2020.2981842
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, significant progress has been made in pixel-level semantic segmentation using deep neural networks. However, for the current semantic segmentation methods, it is still challenging to achieve the balance between segmentation accuracy and computational cost. To address this issue, we propose the Contextual Attention Refinement Network (CARNet). In this method, we construct the Contextual Attention Refinement Module (CARModule), which learns an attention vector to guide the fusion of low-level and high-level features for obtaining higher segmentation accuracy. The CARModule is lightweight and can be directly equipped with different types of network structures. To better optimize the network, we additionally consider the semantic information, and further introduce the Semantic Context Loss (SCLoss) into the overall loss function. In the experiments, we validate the effectiveness and efficiency of our method on several public datasets for semantic segmentation. The results show that our method achieves a good balance on accuracy and computational costs.
引用
下载
收藏
页码:55230 / 55240
页数:11
相关论文
共 50 条
  • [31] Lightweight Bilateral Network for Real-Time Semantic Segmentation
    Wang, Pengtao
    Li, Lihong
    Pan, Feiyang
    Wang, Lin
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (04) : 673 - 682
  • [32] Dual Context Network for real-time semantic segmentation
    Yin, Hong
    Xie, Wenbin
    Zhang, Jingjing
    Zhang, Yuanfa
    Zhu, Weixing
    Gao, Jie
    Shao, Yan
    Li, Yajun
    MACHINE VISION AND APPLICATIONS, 2023, 34 (02)
  • [33] SPSSNet: a real-time network for image semantic segmentation
    Saqib Mamoon
    Muhammad Arslan Manzoor
    Fa-en Zhang
    Zakir Ali
    Jian-feng Lu
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1770 - 1782
  • [34] Real-time Semantic Segmentation with Context Aggregation Network
    Yang, Michael Ying
    Kumaar, Saumya
    Lyu, Ye
    Nex, Francesco
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 124 - 134
  • [35] Dual Context Network for real-time semantic segmentation
    Hong Yin
    Wenbin Xie
    Jingjing Zhang
    Yuanfa Zhang
    Weixing Zhu
    Jie Gao
    Yan Shao
    Yajun Li
    Machine Vision and Applications, 2023, 34
  • [36] Spatial-Semantic Fusion Network for Semantic Segmentation in Real-time
    Fang Yu
    Zhang Xuehe
    Zhang He
    Liu Gangfeng
    Li Changle
    Zhao Jie
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 30 - 35
  • [37] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Zhao, Shan
    Wu, Xuan
    Tian, Kaiwen
    Yuan, Yang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1899 - 1916
  • [38] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Shan Zhao
    Xuan Wu
    Kaiwen Tian
    Yang Yuan
    Complex & Intelligent Systems, 2024, 10 : 1899 - 1916
  • [39] PBSNet: pseudo bilateral segmentation network for real-time semantic segmentation
    Luo, Hui-Lan
    Liu, Chun-Yan
    Mahmoodi, Soroosh
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [40] Detail Guided Multilateral Segmentation Network for Real-Time Semantic Segmentation
    Jiang, Qunyan
    Dai, Juying
    Rui, Ting
    Shao, Faming
    Hu, Ruizhe
    Du, Yinan
    Zhang, Heng
    APPLIED SCIENCES-BASEL, 2022, 12 (21):