Determining the optimal ridge parameter in logistic regression

被引:0
|
作者
Phrueksawatnon, Piyada [1 ]
Jitthavech, Jirawan [1 ]
Lorchirachoonkul, Vichit [1 ]
机构
[1] Natl Inst Dev Adm, Sch Appl Stat, 118 Serithai Rd, Bangkok 10240, Thailand
关键词
Bounds of the ridge parameter; Efficiency; Logistic regression; Multicollinearity; Simulation; BIASED-ESTIMATION;
D O I
10.1080/03610918.2019.1626890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A closed interval based on the eigenvalues of the explanatory variables in the dataset is analytically derived to contain the ridge parameter that minimizes the mean squared error (MSE) of the coefficient estimators in a logistic regression model. After specifying the required accuracy, a Fibonacci search can efficiently locate the optimal ridge parameter within such a closed interval. Based on a simulation comprising 2,000 replications of three sample sizes (100, 200, and 1,000) from a logistic regression model consisting of two correlated variables with correlation coefficients of 0.90, 0.95, and 0.99, and one independent variable, it is confirmed that, using the true mean squared error criterion, the relative efficiency of the estimator with the optimal ridge parameter is clearly higher than those of estimators using six commonly used ridge estimators. Finally, using a real-life data set of small size and changing the criterion to the asymptotic mean squared error, comparisons with the same six estimators show that the relative efficiency of the estimator with the optimal ridge parameter is better than or equal to others.
引用
收藏
页码:3569 / 3580
页数:12
相关论文
共 50 条
  • [41] OPTIMAL BIAS IN RIDGE REGRESSION APPROACHES TO MULTICOLLINEARITY
    KASARDA, JD
    SHIH, WFP
    SOCIOLOGICAL METHODS & RESEARCH, 1977, 5 (04) : 461 - 470
  • [42] Optimal Subsampling for Large Sample Logistic Regression
    Wang, HaiYing
    Zhu, Rong
    Ma, Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 829 - 844
  • [43] A Monte Carlo study on the ridge parameter of the seemingly unrelated ridge regression models
    Mehdizadeh Esfanjani, Robab
    Najarzadeh, Dariush
    Jabbari Khamnei, Hossein
    Hormozinejad, Farshin
    Talebi, Mahnaz
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (13) : 2176 - 2195
  • [44] More on the Ridge Parameter Estimators for the Gamma Ridge Regression Model: Simulation and Applications
    Yasin, Ahad
    Amin, Muhammad
    Qasim, Muhammad
    Muse, Abdisalam Hassan
    Soliman, Adam Braima
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [45] New ridge parameter estimators for the quasi-Poisson ridge regression model
    Shahzad, Aamir
    Amin, Muhammad
    Emam, Walid
    Faisal, Muhammad
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [46] Indirect measurements: combining parameter selection with ridge regression
    Polak, AG
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (03) : 278 - 287
  • [47] TWO PARAMETER RIDGE ESTIMATOR FOR THE BELL REGRESSION MODEL
    Melike, Isilar
    Y. Murat, Bulut
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 712 - 723
  • [48] Regularization Parameter Tuning Optimization Approach in Logistic Regression
    El-Koka, Ahmed
    Era, Kyung-Hwan
    Kang, Dae-Ki
    2013 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2013, : 13 - 18
  • [49] A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
    Atalik, G.
    Senturk, S.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2018, 15 (01): : 91 - 102
  • [50] A variational method for parameter estimation in a logistic spatial regression
    Hardouin, Cecile
    SPATIAL STATISTICS, 2019, 31