Small Object Detection in Traffic Scenes Based on YOLO-MXANet

被引:19
|
作者
He, Xiaowei [1 ]
Cheng, Rao [1 ]
Zheng, Zhonglong [1 ]
Wang, Zeji [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; computer vision; intelligence transportation; YOLOv3; lightweight;
D O I
10.3390/s21217422
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In terms of small objects in traffic scenes, general object detection algorithms have low detection accuracy, high model complexity, and slow detection speed. To solve the above problems, an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection over Union (CIoU) is utilized to improve loss function for promoting the positioning accuracy of the small object. In order to reduce the complexity of the model, we present a lightweight yet powerful backbone network (named SA-MobileNeXt) that incorporates channel and spatial attention. Our approach can extract expressive features more effectively by applying the Shuffle Channel and Spatial Attention (SCSA) module into the SandGlass Block (SGBlock) module while increasing the parameters by a small number. In addition, the data enhancement method combining Mosaic and Mixup is employed to improve the robustness of the training model. The Multi-scale Feature Enhancement Fusion (MFEF) network is proposed to fuse the extracted features better. In addition, the SiLU activation function is utilized to optimize the Convolution-Batchnorm-Leaky ReLU (CBL) module and the SGBlock module to accelerate the convergence of the model. The ablation experiments on the KITTI dataset show that each improved method is effective. The improved algorithm reduces the complexity and detection speed of the model while improving the object detection accuracy. The comparative experiments on the KITTY dataset and CCTSDB dataset with other algorithms show that our algorithm also has certain advantages.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] MRD-YOLO: A Multispectral Object Detection Algorithm for Complex Road Scenes
    Sun, Chaoyue
    Chen, Yajun
    Qiu, Xiaoyang
    Li, Rongzhen
    You, Longxiang
    SENSORS, 2024, 24 (10)
  • [32] ViT-YOLO:Transformer-Based YOLO for Object Detection
    Zhang, Zixiao
    Lu, Xiaoqiang
    Cao, Guojin
    Yang, Yuting
    Jiao, Licheng
    Liu, Fang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2799 - 2808
  • [33] Modified Object Detection Method Based on YOLO
    Zhao, Xia
    Ni, Yingting
    Jia, Haihang
    COMPUTER VISION, PT III, 2017, 773 : 233 - 244
  • [34] Object Detection Based on Multi-Source Information Fusion in Different Traffic Scenes
    Huang, Chenchen
    Chen, Siqi
    Xu, Longtao
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 213 - 217
  • [35] Object Detection in Dense and Mixed Traffic for Autonomous Vehicles With Modified Yolo
    Wibowo, Ari
    Trilaksono, Bambang Riyanto
    Hidayat, Egi Muhammad Idris
    Munir, Rinaldi
    IEEE ACCESS, 2023, 11 : 134866 - 134877
  • [36] Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
    Hu, Mengzi
    Li, Ziyang
    Yu, Jiong
    Wan, Xueqiang
    Tan, Haotian
    Lin, Zeyu
    SENSORS, 2023, 23 (14)
  • [37] MODEL-BASED OBJECT TRACKING IN TRAFFIC SCENES
    KOLLER, D
    DANIILIDIS, K
    THORHALLSON, T
    NAGEL, HH
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 588 : 437 - 452
  • [38] SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
    Han, Tianxin
    Dong, Qing
    Sun, Lina
    SENSORS, 2023, 23 (19)
  • [39] Traffic Sign Detection and Recognition Using YOLO Object Detection Algorithm: A Systematic Review
    Flores-Calero, Marco
    Astudillo, Cesar A.
    Guevara, Diego
    Maza, Jessica
    Lita, Bryan S.
    Defaz, Bryan
    Ante, Juan S.
    Zabala-Blanco, David
    Armingol Moreno, Jose Maria
    MATHEMATICS, 2024, 12 (02)
  • [40] MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes
    Song, Yingkun
    Hong, Shunhe
    Hu, Chentao
    He, Pingan
    Tao, Lingbing
    Tie, Zhixin
    Ding, Chengfu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5761 - 5784