Porous Mg2(SiSn) thermoelectric composite with ultra-low thermal conductivity in submillimeter scale

被引:2
|
作者
Hsin, Cheng-Lun [1 ]
Kuo, Shih-Shen [1 ]
Gu, Hong-Zhi [1 ]
机构
[1] Natl Cent Univ, Dept Elect Engn, Taoyuan 32001, Taiwan
来源
关键词
Thermoelectric; Powder processing; Composite; Porosity; Thermal conductivity; THIN-FILM; PERFORMANCE; NANOWIRES; BETA-FESI2; SUBSTRATE;
D O I
10.1007/s00339-021-05097-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric materials have attracted considerable attention in recent decades due to their thermal energy conversion. Suppression of the thermal conductivity and enhancement of the figure of merit (ZT) can be achieved through porosity and nanoengineering. This paper reports the fabrication of compact and porous Mg-2 (SiSn) flakes in the submillimeter scale without conventional hot-pressing and spark plasma sintering process. X-ray diffraction measurements were performed to identify the chemical composition, and the thermoelectric properties of both samples were measured. The porosity induced more than 98% decrease in the phonon thermal conductivity. The effectiveness of the phonon scattering was significantly enhanced by the porous structure to lower the defect-induced phonon scattering time and phonon thermal conductivity. Despite the increase in electrical resistivity, the ultra-low thermal conductivity of the fabricated porous Mg-2 (SiSn) resulted in a distinct fivefold enhancement of ZT. This approach provides experimental evidence of phonon scattering by structural porosity and a feasible route to synthesize thermoelectric Mg-2 (SiSn) composites. [GRAPHICS] .
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Ultra-Low Thermal Conductivity of Germanium Nanowires
    Pavlikov, A. V.
    Sharafutdinova, A. M.
    Isacova, C. I.
    Cocemasov, A. I.
    Nika, D. L.
    PHYSICS OF THE SOLID STATE, 2024, 66 (08) : 250 - 256
  • [22] Ultra-low thermal conductivity in graphene nanomesh
    Feng, Tianli
    Ruan, Xiulin
    CARBON, 2016, 101 : 107 - 113
  • [23] Ultra-Low Thermal Conductivity of Moire Diamanes
    Chowdhury, Suman
    Demin, Victor A.
    Chernozatonskii, Leonid A.
    Kvashnin, Alexander G.
    MEMBRANES, 2022, 12 (10)
  • [24] Cu2Se/MXene (Ti3C2Tx) composite achieved ultra-low thermal conductivity and enhanced thermoelectric
    Gu, Xueke
    Fan, Pengya
    Wang, Chao
    Cui, Shengqiang
    Wang, Xinxin
    You, Guangmeng
    Peng, Chengxiao
    Yang, Gui
    PHYSICA B-CONDENSED MATTER, 2024, 695
  • [25] Thermoelectric performance in disordered Cu2ZnSnSe4 nanostructures driven by ultra-low thermal conductivity
    Mukherjee, Binayak
    Isotta, Eleonora
    Malagutti, Marcelo Augusto
    Lohani, Ketan
    Rebuffi, Luca
    Fanciulli, Carlo
    Scardi, Paolo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [26] Ultra-low thermal conductivity of AgBiS2 via Sb substitution as a scattering center for thermoelectric applications
    Manimozhi, T.
    Kavirajan, S.
    Bharathi, K. Kamala
    Kumar, E. Senthil
    Navaneethan, M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (16) : 12615 - 12628
  • [27] Ultra-low thermal conductivity of AgBiS2 via Sb substitution as a scattering center for thermoelectric applications
    T. Manimozhi
    S. Kavirajan
    K. Kamala Bharathi
    E. Senthil Kumar
    M. Navaneethan
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 12615 - 12628
  • [28] Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination
    Jia He
    Yanxiao Hu
    Dengfeng Li
    Jie Chen
    Nano Research, 2022, 15 : 3804 - 3811
  • [29] Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength
    Li, Xianxi
    Yan, Liwen
    Zhang, Yibo
    Yang, Xukun
    Guo, Anran
    Du, Haiyan
    Hou, Feng
    Liu, Jiachen
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9788 - 9796
  • [30] Enhanced Band Convergence and Ultra-Low Thermal Conductivity Lead to High Thermoelectric Performance in SnTe
    Pathak, Riddhimoy
    Sarkar, Debattam
    Biswas, Kanishka
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (32) : 17686 - 17692