Fish Classification Based on Robust Features Selection Using Machine Learning Techniques

被引:8
|
作者
Hnin, Than Thida [1 ]
Lynn, Khin Thidar [1 ]
机构
[1] Univ Comp Studies, Mandalay, Myanmar
关键词
Combination theory; Taxonomy; Identification; Fishes;
D O I
10.1007/978-3-319-23204-1_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The taxonomic identification of fishes is a time-consuming process and making errors is indispensable for those who are not specialists. This system proposes an automated species identification system to identify taxonomic characters of species based on specimens. It also provides statistical clues for assisting taxonomists to identify accurate species or review misdiagnosed species. For this system, feature selection is an essential step to effectively reduce data dimensionality. By using combination theory, this system creates the set of attribute pairs to construct the training dataset. And then each attribute pair in training dataset is tested by using two classifiers. Based on the accuracy result of each classifier on attribute pairs and the majority voting of each feature in these attribute pairs, this system selects the most relevant feature set. Finally, this system applied three supervised classifiers to verify the effectiveness of selected features subset.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 50 条
  • [41] Classification of crop based on macronutrients and weather data using machine learning techniques
    Dash, Ritesh
    Dash, Dillip Ku
    Biswal, G. C.
    RESULTS IN ENGINEERING, 2021, 9
  • [42] An exploration on text classification using machine learning techniques
    Athanasios, Tzimourtas
    Spyros, Bakalakos
    Panagiota, Tselenti
    Athanasios, Voulodimos
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 247 - 249
  • [43] Classification of Sentimental Reviews Using Machine Learning Techniques
    Tripathy, Abinash
    Agrawal, Ankit
    Rath, Santanu Kumar
    3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 821 - 829
  • [44] ONLINE NEWS CLASSIFICATION USING MACHINE LEARNING TECHNIQUES
    Ahmed, Jeelani
    Ahmed, Muqeem
    IIUM ENGINEERING JOURNAL, 2021, 22 (02): : 210 - 225
  • [45] Classification of yoga pose using machine learning techniques
    Palanimeera, J.
    Ponmozhi, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2930 - 2933
  • [46] Road vehicle classification using machine learning techniques
    Al-Tarawneh, Mu'ath
    Huang, Ying
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2019, 2019, 10970
  • [47] Skin Disease Classification Using Machine Learning Techniques
    Abir, Mohammad Ashraful Haque
    Anik, Golam Kibria
    Riam, Shazid Hasan
    Karim, Mohammed Ariful
    Tareq, Azizul Hakim
    Rahman, Rashedur M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 597 - 608
  • [48] Patient care classification using machine learning techniques
    Melhem, Shatha
    Al-Aiad, Ahmad
    Al-Ayyad, Muhammad Saleh
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 57 - 62
  • [49] Toddler ASD Classification Using Machine Learning Techniques
    Mohanty, Ashima Sindhu
    Patra, Krishna Chandra
    Parida, Priyadarsan
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (07) : 156 - 171
  • [50] Classification of WatSan Technologies Using Machine Learning Techniques
    Al Nuaimi, Hala
    Abdelmagid, Mohamed
    Bouabid, Ali
    Chrysikopoulos, Constantinos V. V.
    Maalouf, Maher
    WATER, 2023, 15 (15)