Development of thermal fatigue testing apparatus with BWR water environment and thermal fatigue strength of austenitic stainless steels

被引:8
|
作者
Hayashi, M
Enomoto, K
Saito, T
Miyagawa, T
机构
[1] Hitachi Ltd, Mech Engn Res Lab, Tsuchiura, Ibaraki 300, Japan
[2] Hitachi Ltd, Hitachi Works, Hitachi, Ibaraki 317, Japan
[3] Tokyo Elect Power Co, Nucl Power Res & Dev Ctr, Tokyo, Japan
关键词
D O I
10.1016/S0029-5493(97)00364-6
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A thermal fatigue testing apparatus was developed in order to clarify the fatigue behavior in BWR environment. Pressurized high and low temperature pure water were alternately supplied into an autoclave with a small cylindrical specimen. Then a fatigue specimen was subjected to homogeneous thermal stress through the wall thickness. Fatigue crack initiation behavior was observed with the replication method and compared with the mechanical fatigue strength performed in air and high temperature water. The thermal fatigue strength of type 304 and 316 nuclear grade (316NG) stainless steels agreed closely with the mechanical fatigue strength, when transforming the nominal stress amplitude to the fictitious stress amplitude by using the mean value of strain amplitudes for room temperature and 288 degrees C. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [31] Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels
    Murakami, Yukitaka
    Kanezaki, Toshihiko
    Mine, Yoji
    Matsuoka, Saburo
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (06): : 1327 - 1339
  • [32] Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping
    Choi, Shin-Beom
    Woo, Seung-Wan
    Chang, Yoon-Suk
    Choi, Jae-Boong
    Kim, Young-Jin
    Lee, Jin-Ho
    Chung, Hae-Dong
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2008, 32 (08) : 660 - 667
  • [33] High Cycle Fatigue of Metastable Austenitic Stainless Steels
    Fargas, G.
    Zapata, A.
    Anglada, M.
    Mateo, A.
    [J]. 5TH INTERNATIONAL EEIGM/AMASE/FORGEMAT CONFERENCE ON ADVANCED MATERIALS RESEARCH, 2009, 5
  • [34] Fatigue properties of austenitic stainless steels with different nitrogen
    Hattori, N
    Nishida, S
    [J]. ADVANCES IN FRACTURE AND FAILURE PREVENTION, PTS 1 AND 2, 2004, 261-263 : 1215 - 1220
  • [35] Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels
    Yukitaka Murakami
    Toshihiko Kanezaki
    Yoji Mine
    Saburo Matsuoka
    [J]. Metallurgical and Materials Transactions A, 2008, 39 : 1327 - 1339
  • [36] Crack initiation and propagation under thermal fatigue of austenitic stainless steel
    Wang, Yanjun
    Charbal, Ali
    Hild, Francois
    Roux, Stephan
    Vincent, Ludovic
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2019, 124 : 149 - 166
  • [37] Effects of Pressurized Water Reactor Medium on the Fatigue Life of Austenitic Stainless Steels
    Wilhelm, Paul
    Rudolph, Juergen
    Steinmann, Paul
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2015, 137 (06):
  • [38] Effects of Boiling Water Reactor Medium on the Fatigue Life of Austenitic Stainless Steels
    Wilhelm, Paul
    Steinmann, Paul
    Rudolph, Juergen
    [J]. JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2016, 138 (03):
  • [39] Fatigue crack initiation and propagation in austenitic stainless steels for light water reactors
    LeDuff, JA
    Ould, P
    Bernard, JL
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1996, 65 (03) : 241 - 253
  • [40] APPARATUS FOR THERMAL FATIGUE TESTS
    ZHADAN, VT
    KULAK, YE
    [J]. INDUSTRIAL LABORATORY, 1970, 36 (02): : 302 - &